Spaces:
Runtime error
Runtime error
File size: 10,092 Bytes
0e09629 8bb6b63 72139be d0347cb 72139be 8bb6b63 d0347cb 114a365 d0347cb 8476b78 d0347cb 30e3c7c d0347cb 30e3c7c d0347cb 30e3c7c d0347cb 30e3c7c d0347cb 30e3c7c d0347cb 72139be d0347cb 30e3c7c d0347cb 30e3c7c d0347cb 8bb6b63 0f0407d d0347cb 01990d8 8476b78 114a365 72139be d0347cb 30e3c7c 72139be d0347cb 30e3c7c d0347cb 30e3c7c 8bb6b63 72139be d0347cb b4aa9f9 d0347cb 8bb6b63 d0347cb 8bb6b63 0f0407d d0347cb c72759d d0347cb 8bb6b63 72139be 01990d8 30e3c7c d0347cb 0ab4ce4 beaf568 24904a3 a26b3e0 beaf568 a26b3e0 b5a485f d0347cb b5a485f d0347cb b5a485f 710e881 30e3c7c d0347cb 30e3c7c 114a365 30e3c7c 8bb6b63 24904a3 b4aa9f9 d0347cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
import gradio as gr
import os
import time
import requests
from bs4 import BeautifulSoup
from urllib.parse import urljoin, urlparse
from groq import Groq
import re
import json
# --- Constants and API Setup ---
CEREBRAS_API_KEY = os.getenv("CEREBRAS_API_KEY")
if not CEREBRAS_API_KEY:
raise ValueError("CEREBRAS_API_KEY environment variable is not set.")
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
if not GROQ_API_KEY:
raise ValueError("GROQ_API_KEY environment variable is not set.")
client_cerebras = Cerebras(api_key=CEREBRAS_API_KEY)
client_groq = Groq(api_key=GROQ_API_KEY)
# --- Model Rate Limit Info ---
CHAT_COMPLETION_MODELS_INFO = """
Chat Completion
ID Requests per Minute Requests per Day Tokens per Minute Tokens per Day
gemma-7b-it 30 14,400 15,000 500,000
gemma2-9b-it 30 14,400 15,000 500,000
llama-3.1-70b-versatile 30 14,400 6,000 200,000
llama-3.1-8b-instant 30 14,400 20,000 500,000
llama-3.2-11b-text-preview 30 7,000 7,000 500,000
llama-3.2-11b-vision-preview) 30 7,000 7,000 500,000
llama-3.2-1b-preview) 30 7,000 7,000 500,000
llama-3.2-90b-text-preview 30 7,000 7,000 500,000
llama-3.2-90b-vision-preview 15 3,500 7,000 250,000
llama-3.3-70b-specdec 30 1,000 6,000 100,000
llama-3.3-70b-versatile 30 1,000 6,000 100,000
llama-guard-3-8b 30 14,400 15,000 500,000
llama3-70b-8192 30 14,400 6,000 500,000
llama3-8b-8192 30 14,400 30,000 500,000
llama3-groq-70b-8192-tool-use-preview 30 14,400 15,000 500,000
llama3-groq-8b-8192-tool-use-preview 30 14,400 15,000 500,000
llava-v1.5-7b-4096-preview 30 14,400 30,000 (No limit)
mixtral-8x7b-32768 30 14,400 5,000 500,000
"""
SPEECH ToText
ID Requests per Minute Requests per Day Audio Seconds per Hour Audio Seconds per Day
distil-whisper-large-v3-en 20 2,000 7,200 28,800
whisper-large-v3 20 2,000 7,200 28,800
whisper-large-v3-turbo 20 2,000 7,200 28,800
def get_model_info():
return f"""
{CHAT_COMPLETION_MODELS_INFO)
{SPEECH_TO_TEXT_MODELS_INFO}
"""
# --- Helper Functions ---
def is_valid_url(url):
try:
result = urlparse(url)
return all([result.scheme, result.netloc])
except ValueError:
return False
def fetch_webpage(url):
try:
response = requests.get(url, timeout=10)
response.raise_for_status()
return response.text
except requests.exceptions.RequestException as e:
return f"Error fetching URL: {e}"
def extract_text_from_html(html):
soup = BeautifulSoup(html, 'html.parser)
text = soup.get_text(separator=' ', strip=True)
return text
# --- Chat Logic with Groq ---
async def chat_with_groq(user_input, chat_history):
start_time = time.time()
try:
formatted_history = "\n".join([f"User: {msg[0]}\nAI: {msg[1]}" for msg in chat_history[-10:]])
messages = [
{"role": "system", "content": f"""
You are IntellijMind, a highly advanced and proactive AI agent. You are designed to assist users in achieving their goals through detailed insights, creative problem-solving, and the use of various tools. Your objective is to understand the user's intentions, break them into logical steps, and use available tools when needed to achieve the best outcome. Available tools: scrape with a URL, and search_internet with a query. Be creative and inject humor when appropriate. You have access to multiple tools to help the user with their requests. Available actions: take_action: 'scrape', parameters: url, take_action: 'search_internet', parameters: query. Example action: Action: take_action, Parameters: {{"action":"scrape", "url":"https://example.com"}} or Action: take_action, Parameters: {{"action":"search_internet", "query":"latest news on AI"}} . Current conversation: {formatted_history}
}},
{"role": "user", "content": user_input}
]
if user_input.lower() == "model info":
response = get_model_info()
return response, "", f"Compute Time: {time.time() - start_time:.2f} seconds", f"Tokens used: {len(user_input.split()) + len(response.split())}"
completion = client_groq.chat.completions.create(
model="llama3-groq-70b-8192-tool-use-preview",
messages=messages,
temperature=1,
max_tokens=2048,
top_p=1,
stream=True,
stop=None,
)
response = ""
chain_of_thought = ""
tool_execution_count = 0
for chunk in completion:
if chunk.choices[0].delta and chunk.choices[0].delta.content:
content = chunk.choices[0].delta.content
response += content
if "Chain of Thought:" in content:
chain_of_thought += content.split("Chain of Thought:", 1)[-1]
if "Action:" in content:
action_match = re.search(r"Action: (\w+), Parameters: (\{.*\})", content)
if action_match and tool_execution_count < 3: # Limit tool use to avoid infinite loops
tool_execution_count += 1
action = action_match.group(1)
parameters = json.loads(action_match.group(2))
if action == "take_action":
if parameters.get("action") == "scrape":
url = parameters.get("url")
if is_valid_url(url):
html_content = fetch_webpage(url)
if not html_content.startswith("Error"):
webpage_text = extract_text_from_html(html_content)
response += f"\nWebpage Content: {webpage_text}\n")
else:
response += f"\nError scraping webpage: {html_content}\n"
else:
response += "\nInvalid URL provided.\n"
elif parameters.get("action") == "search_internet":
query = parameters.get("query")
response += f"\n Search query: {query}. Note: Search is simulated in this environment. Results may vary. \n"
response += f"\nSearch Results: Mock Results for query: {query} \n"
compute_time = time.time() - start_time
token_usage = len(user_input.split()) + len(response.split())
return response, chain_of_thought, f"Compute Time: {compute_time:.2f} seconds", f"Tokens used: {token_usage}"
except Exception as e:
return "Error: Unable to process your request.", "", str(e), ""
# --- Gradio Interface ---
def gradio_ui():
with gr.Blocks() as demo:
gr.Markdown("""# π IntellijMind: The Autonomous AI Agent\nExperience the forefront of AI capabilities, where the agent proactively achieves your goals!""")
with gr.Row():
with gr.Column(scale=6):
chat_history = gr.Chatbot(label="Chat History")
with gr.Column(scale=2):
compute_time = gr.Textbox(label="Compute Time", interactive=False)
chain_of_thought_display = gr.Textbox(label="Chain of Thought", interactive=False, lines=10)
token_usage_display = gr.Textbox(label="Token Usage", interactive=False)
user_input = gr.Textbox(label="Type your message", placeholder="Ask me anything...", lines=2)
with gr.Row():
send_button = gr.Button("Send", variant="primary")
clear_button = gr.Button("Clear Chat")
export_button = gr.Button("Export Chat History")
async def handle_chat(chat_history, user_input):
if not user_input.strip():
return chat_history, "", "", "", "Please enter a valid message.")
ai_response, chain_of_thought, compute_info, token_usage = await chat_with_groq(user_input, chat_history)
chat_history.append((user_input, ai_response))
return chat_history, chain_of_thought, compute_info, token_usage
def clear_chat():
return [], "", "", ""
def export_chat(chat_history):
if not chat_history:
return "", "No chat history to export."
chat_text = "\n".join([f"User: {item[0]}\nAI: {item[1]}" for item in chat_history])
filename = f"chat_history_{int(time.time())}.txt"
with open(filename, "w") as file:
file.write(chat_text)
return f"Chat history exported to {filename}.", ""
send_button.click(handle_chat, inputs=[chat_history, user_input], outputs=[chat_history, chain_of_thought_display, compute_time, token_usage_display])
clear_button.click(clear_chat, outputs=[chat_history, chain_of(thought_display, compute_time, token_usage_display])
export_button.click(export_chat, inputs=[chat_history], outputs=[compute_time, chain_of(thought_display])
user_input.submit(handle_chat, inputs=[chat_history, user_input], outputs=[chat_history, chain_of(thought_display, compute_time, token_usage_display])
gr.Markdown("""---\n### π Features:\n- **Autonomous Agent**: Proactively pursues your goals.\n- **Advanced Tool Use**: Utilizes multiple tools like web scraping and search.\n- **Dynamic and Creative**: Engages with humor and creative responses.\n- **Enhanced Chat History**: Maintains better context of the conversation.\n- **Real-Time Performance Metrics**: Measure response compute time instantly.\n- **Token Usage Tracking**: Monitor token usage per response for transparency.\n- **Export Chat History**: Save your conversation(as a text(file(for future(reference.\n- **User-Friendly Design**: Intuitive chatbot(interface(with(powerful(features.\n- **Insightful Chain of Thought**: See the reasoning process behind AI decisions.\n- **Submit on Enter**: Seamless interaction with keyboard support.\n""")
return demo
# Run the Gradio app
demo = gradio_ui()
demo.launch() |