Spaces:
Build error
Build error
| import argparse | |
| import os | |
| from argparse import RawTextHelpFormatter | |
| import torch | |
| from tqdm import tqdm | |
| from TTS.config import load_config | |
| from TTS.config.shared_configs import BaseDatasetConfig | |
| from TTS.tts.datasets import load_tts_samples | |
| from TTS.tts.utils.managers import save_file | |
| from TTS.tts.utils.speakers import SpeakerManager | |
| def compute_embeddings( | |
| model_path, | |
| config_path, | |
| output_path, | |
| old_speakers_file=None, | |
| old_append=False, | |
| config_dataset_path=None, | |
| formatter_name=None, | |
| dataset_name=None, | |
| dataset_path=None, | |
| meta_file_train=None, | |
| meta_file_val=None, | |
| disable_cuda=False, | |
| no_eval=False, | |
| ): | |
| use_cuda = torch.cuda.is_available() and not disable_cuda | |
| if config_dataset_path is not None: | |
| c_dataset = load_config(config_dataset_path) | |
| meta_data_train, meta_data_eval = load_tts_samples(c_dataset.datasets, eval_split=not no_eval) | |
| else: | |
| c_dataset = BaseDatasetConfig() | |
| c_dataset.formatter = formatter_name | |
| c_dataset.dataset_name = dataset_name | |
| c_dataset.path = dataset_path | |
| if meta_file_train is not None: | |
| c_dataset.meta_file_train = meta_file_train | |
| if meta_file_val is not None: | |
| c_dataset.meta_file_val = meta_file_val | |
| meta_data_train, meta_data_eval = load_tts_samples(c_dataset, eval_split=not no_eval) | |
| if meta_data_eval is None: | |
| samples = meta_data_train | |
| else: | |
| samples = meta_data_train + meta_data_eval | |
| encoder_manager = SpeakerManager( | |
| encoder_model_path=model_path, | |
| encoder_config_path=config_path, | |
| d_vectors_file_path=old_speakers_file, | |
| use_cuda=use_cuda, | |
| ) | |
| class_name_key = encoder_manager.encoder_config.class_name_key | |
| # compute speaker embeddings | |
| if old_speakers_file is not None and old_append: | |
| speaker_mapping = encoder_manager.embeddings | |
| else: | |
| speaker_mapping = {} | |
| for fields in tqdm(samples): | |
| class_name = fields[class_name_key] | |
| audio_file = fields["audio_file"] | |
| embedding_key = fields["audio_unique_name"] | |
| # Only update the speaker name when the embedding is already in the old file. | |
| if embedding_key in speaker_mapping: | |
| speaker_mapping[embedding_key]["name"] = class_name | |
| continue | |
| if old_speakers_file is not None and embedding_key in encoder_manager.clip_ids: | |
| # get the embedding from the old file | |
| embedd = encoder_manager.get_embedding_by_clip(embedding_key) | |
| else: | |
| # extract the embedding | |
| embedd = encoder_manager.compute_embedding_from_clip(audio_file) | |
| # create speaker_mapping if target dataset is defined | |
| speaker_mapping[embedding_key] = {} | |
| speaker_mapping[embedding_key]["name"] = class_name | |
| speaker_mapping[embedding_key]["embedding"] = embedd | |
| if speaker_mapping: | |
| # save speaker_mapping if target dataset is defined | |
| if os.path.isdir(output_path): | |
| mapping_file_path = os.path.join(output_path, "speakers.pth") | |
| else: | |
| mapping_file_path = output_path | |
| if os.path.dirname(mapping_file_path) != "": | |
| os.makedirs(os.path.dirname(mapping_file_path), exist_ok=True) | |
| save_file(speaker_mapping, mapping_file_path) | |
| print("Speaker embeddings saved at:", mapping_file_path) | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser( | |
| description="""Compute embedding vectors for each audio file in a dataset and store them keyed by `{dataset_name}#{file_path}` in a .pth file\n\n""" | |
| """ | |
| Example runs: | |
| python TTS/bin/compute_embeddings.py --model_path speaker_encoder_model.pth --config_path speaker_encoder_config.json --config_dataset_path dataset_config.json | |
| python TTS/bin/compute_embeddings.py --model_path speaker_encoder_model.pth --config_path speaker_encoder_config.json --formatter_name coqui --dataset_path /path/to/vctk/dataset --dataset_name my_vctk --meta_file_train /path/to/vctk/metafile_train.csv --meta_file_val /path/to/vctk/metafile_eval.csv | |
| """, | |
| formatter_class=RawTextHelpFormatter, | |
| ) | |
| parser.add_argument( | |
| "--model_path", | |
| type=str, | |
| help="Path to model checkpoint file. It defaults to the released speaker encoder.", | |
| default="https://github.com/coqui-ai/TTS/releases/download/speaker_encoder_model/model_se.pth.tar", | |
| ) | |
| parser.add_argument( | |
| "--config_path", | |
| type=str, | |
| help="Path to model config file. It defaults to the released speaker encoder config.", | |
| default="https://github.com/coqui-ai/TTS/releases/download/speaker_encoder_model/config_se.json", | |
| ) | |
| parser.add_argument( | |
| "--config_dataset_path", | |
| type=str, | |
| help="Path to dataset config file. You either need to provide this or `formatter_name`, `dataset_name` and `dataset_path` arguments.", | |
| default=None, | |
| ) | |
| parser.add_argument( | |
| "--output_path", | |
| type=str, | |
| help="Path for output `pth` or `json` file.", | |
| default="speakers.pth", | |
| ) | |
| parser.add_argument( | |
| "--old_file", | |
| type=str, | |
| help="The old existing embedding file, from which the embeddings will be directly loaded for already computed audio clips.", | |
| default=None, | |
| ) | |
| parser.add_argument( | |
| "--old_append", | |
| help="Append new audio clip embeddings to the old embedding file, generate a new non-duplicated merged embedding file. Default False", | |
| default=False, | |
| action="store_true", | |
| ) | |
| parser.add_argument("--disable_cuda", type=bool, help="Flag to disable cuda.", default=False) | |
| parser.add_argument("--no_eval", help="Do not compute eval?. Default False", default=False, action="store_true") | |
| parser.add_argument( | |
| "--formatter_name", | |
| type=str, | |
| help="Name of the formatter to use. You either need to provide this or `config_dataset_path`", | |
| default=None, | |
| ) | |
| parser.add_argument( | |
| "--dataset_name", | |
| type=str, | |
| help="Name of the dataset to use. You either need to provide this or `config_dataset_path`", | |
| default=None, | |
| ) | |
| parser.add_argument( | |
| "--dataset_path", | |
| type=str, | |
| help="Path to the dataset. You either need to provide this or `config_dataset_path`", | |
| default=None, | |
| ) | |
| parser.add_argument( | |
| "--meta_file_train", | |
| type=str, | |
| help="Path to the train meta file. If not set, dataset formatter uses the default metafile if it is defined in the formatter. You either need to provide this or `config_dataset_path`", | |
| default=None, | |
| ) | |
| parser.add_argument( | |
| "--meta_file_val", | |
| type=str, | |
| help="Path to the evaluation meta file. If not set, dataset formatter uses the default metafile if it is defined in the formatter. You either need to provide this or `config_dataset_path`", | |
| default=None, | |
| ) | |
| args = parser.parse_args() | |
| compute_embeddings( | |
| args.model_path, | |
| args.config_path, | |
| args.output_path, | |
| old_speakers_file=args.old_file, | |
| old_append=args.old_append, | |
| config_dataset_path=args.config_dataset_path, | |
| formatter_name=args.formatter_name, | |
| dataset_name=args.dataset_name, | |
| dataset_path=args.dataset_path, | |
| meta_file_train=args.meta_file_train, | |
| meta_file_val=args.meta_file_val, | |
| disable_cuda=args.disable_cuda, | |
| no_eval=args.no_eval, | |
| ) | |