Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,8 @@
|
|
| 1 |
import spaces
|
| 2 |
|
| 3 |
import os
|
|
|
|
|
|
|
| 4 |
import imageio
|
| 5 |
import numpy as np
|
| 6 |
import torch
|
|
@@ -31,6 +33,13 @@ from huggingface_hub import hf_hub_download
|
|
| 31 |
|
| 32 |
import gradio as gr
|
| 33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
###############################################################################
|
| 36 |
# Configuration for InstantMesh
|
|
@@ -212,6 +221,175 @@ def make3d(images):
|
|
| 212 |
return mesh_fpath, mesh_glb_fpath
|
| 213 |
|
| 214 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 215 |
###############################################################################
|
| 216 |
# Gradio
|
| 217 |
###############################################################################
|
|
@@ -318,7 +496,8 @@ with gr.Blocks() as demo:
|
|
| 318 |
gr.Markdown("Note: The model shown here has a darker appearance. Download to get correct results.")
|
| 319 |
with gr.Row():
|
| 320 |
gr.Markdown('''Try a different <b>seed value</b> if the result is unsatisfying (Default: 42).''')
|
| 321 |
-
|
|
|
|
| 322 |
mv_images = gr.State()
|
| 323 |
|
| 324 |
step1_submit.click(fn=check_input_image, inputs=[input_image]).success(
|
|
@@ -334,7 +513,58 @@ with gr.Blocks() as demo:
|
|
| 334 |
inputs=[mv_images],
|
| 335 |
outputs=[output_model_obj, output_model_glb]
|
| 336 |
)
|
| 337 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 338 |
gr.Markdown(STEP3_HEADER)
|
| 339 |
gr.Markdown(STEP4_HEADER)
|
| 340 |
|
|
|
|
| 1 |
import spaces
|
| 2 |
|
| 3 |
import os
|
| 4 |
+
import time
|
| 5 |
+
|
| 6 |
import imageio
|
| 7 |
import numpy as np
|
| 8 |
import torch
|
|
|
|
| 33 |
|
| 34 |
import gradio as gr
|
| 35 |
|
| 36 |
+
# Imports for MeshAnythingv2
|
| 37 |
+
from accelerate.utils import set_seed
|
| 38 |
+
from accelerate import Accelerator
|
| 39 |
+
from main import load_v2
|
| 40 |
+
from mesh_to_pc import process_mesh_to_pc
|
| 41 |
+
import matplotlib.pyplot as plt
|
| 42 |
+
from mpl_toolkits.mplot3d.art3d import Poly3DCollection
|
| 43 |
|
| 44 |
###############################################################################
|
| 45 |
# Configuration for InstantMesh
|
|
|
|
| 221 |
return mesh_fpath, mesh_glb_fpath
|
| 222 |
|
| 223 |
|
| 224 |
+
###############################################################################
|
| 225 |
+
# Configuration for MeshAnythingv2
|
| 226 |
+
###############################################################################
|
| 227 |
+
model = load_v2()
|
| 228 |
+
device = torch.device('cuda')
|
| 229 |
+
accelerator = Accelerator(
|
| 230 |
+
mixed_precision="fp16",
|
| 231 |
+
)
|
| 232 |
+
model = accelerator.prepare(model)
|
| 233 |
+
model.eval()
|
| 234 |
+
print("Model loaded to device")
|
| 235 |
+
|
| 236 |
+
def wireframe_render(mesh):
|
| 237 |
+
views = [
|
| 238 |
+
(90, 20), (270, 20)
|
| 239 |
+
]
|
| 240 |
+
mesh.vertices = mesh.vertices[:, [0, 2, 1]]
|
| 241 |
+
|
| 242 |
+
bounding_box = mesh.bounds
|
| 243 |
+
center = mesh.centroid
|
| 244 |
+
scale = np.ptp(bounding_box, axis=0).max()
|
| 245 |
+
|
| 246 |
+
fig = plt.figure(figsize=(10, 10))
|
| 247 |
+
|
| 248 |
+
# Function to render and return each view as an image
|
| 249 |
+
def render_view(mesh, azimuth, elevation):
|
| 250 |
+
ax = fig.add_subplot(111, projection='3d')
|
| 251 |
+
ax.set_axis_off()
|
| 252 |
+
|
| 253 |
+
# Extract vertices and faces for plotting
|
| 254 |
+
vertices = mesh.vertices
|
| 255 |
+
faces = mesh.faces
|
| 256 |
+
|
| 257 |
+
# Plot faces
|
| 258 |
+
ax.add_collection3d(Poly3DCollection(
|
| 259 |
+
vertices[faces],
|
| 260 |
+
facecolors=(0.8, 0.5, 0.2, 1.0), # Brownish yellow
|
| 261 |
+
edgecolors='k',
|
| 262 |
+
linewidths=0.5,
|
| 263 |
+
))
|
| 264 |
+
|
| 265 |
+
# Set limits and center the view on the object
|
| 266 |
+
ax.set_xlim(center[0] - scale / 2, center[0] + scale / 2)
|
| 267 |
+
ax.set_ylim(center[1] - scale / 2, center[1] + scale / 2)
|
| 268 |
+
ax.set_zlim(center[2] - scale / 2, center[2] + scale / 2)
|
| 269 |
+
|
| 270 |
+
# Set view angle
|
| 271 |
+
ax.view_init(elev=elevation, azim=azimuth)
|
| 272 |
+
|
| 273 |
+
# Save the figure to a buffer
|
| 274 |
+
buf = io.BytesIO()
|
| 275 |
+
plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0, dpi=300)
|
| 276 |
+
plt.clf()
|
| 277 |
+
buf.seek(0)
|
| 278 |
+
|
| 279 |
+
return Image.open(buf)
|
| 280 |
+
|
| 281 |
+
# Render each view and store in a list
|
| 282 |
+
images = [render_view(mesh, az, el) for az, el in views]
|
| 283 |
+
|
| 284 |
+
# Combine images horizontally
|
| 285 |
+
widths, heights = zip(*(i.size for i in images))
|
| 286 |
+
total_width = sum(widths)
|
| 287 |
+
max_height = max(heights)
|
| 288 |
+
|
| 289 |
+
combined_image = Image.new('RGBA', (total_width, max_height))
|
| 290 |
+
|
| 291 |
+
x_offset = 0
|
| 292 |
+
for img in images:
|
| 293 |
+
combined_image.paste(img, (x_offset, 0))
|
| 294 |
+
x_offset += img.width
|
| 295 |
+
|
| 296 |
+
# Save the combined image
|
| 297 |
+
save_path = f"combined_mesh_view_{int(time.time())}.png"
|
| 298 |
+
combined_image.save(save_path)
|
| 299 |
+
|
| 300 |
+
plt.close(fig)
|
| 301 |
+
return save_path
|
| 302 |
+
|
| 303 |
+
@spaces.GPU(duration=360)
|
| 304 |
+
def do_inference(input_3d, sample_seed=0, do_sampling=False, do_marching_cubes=False):
|
| 305 |
+
set_seed(sample_seed)
|
| 306 |
+
print("Seed value:", sample_seed)
|
| 307 |
+
|
| 308 |
+
input_mesh = trimesh.load(input_3d)
|
| 309 |
+
pc_list, mesh_list = process_mesh_to_pc([input_mesh], marching_cubes = do_marching_cubes)
|
| 310 |
+
pc_normal = pc_list[0] # 4096, 6
|
| 311 |
+
mesh = mesh_list[0]
|
| 312 |
+
vertices = mesh.vertices
|
| 313 |
+
|
| 314 |
+
pc_coor = pc_normal[:, :3]
|
| 315 |
+
normals = pc_normal[:, 3:]
|
| 316 |
+
|
| 317 |
+
bounds = np.array([vertices.min(axis=0), vertices.max(axis=0)])
|
| 318 |
+
# scale mesh and pc
|
| 319 |
+
vertices = vertices - (bounds[0] + bounds[1])[None, :] / 2
|
| 320 |
+
vertices = vertices / (bounds[1] - bounds[0]).max()
|
| 321 |
+
mesh.vertices = vertices
|
| 322 |
+
pc_coor = pc_coor - (bounds[0] + bounds[1])[None, :] / 2
|
| 323 |
+
pc_coor = pc_coor / (bounds[1] - bounds[0]).max()
|
| 324 |
+
|
| 325 |
+
mesh.merge_vertices()
|
| 326 |
+
mesh.update_faces(mesh.nondegenerate_faces())
|
| 327 |
+
mesh.update_faces(mesh.unique_faces())
|
| 328 |
+
mesh.remove_unreferenced_vertices()
|
| 329 |
+
mesh.fix_normals()
|
| 330 |
+
try:
|
| 331 |
+
if mesh.visual.vertex_colors is not None:
|
| 332 |
+
orange_color = np.array([255, 165, 0, 255], dtype=np.uint8)
|
| 333 |
+
|
| 334 |
+
mesh.visual.vertex_colors = np.tile(orange_color, (mesh.vertices.shape[0], 1))
|
| 335 |
+
else:
|
| 336 |
+
orange_color = np.array([255, 165, 0, 255], dtype=np.uint8)
|
| 337 |
+
mesh.visual.vertex_colors = np.tile(orange_color, (mesh.vertices.shape[0], 1))
|
| 338 |
+
except Exception as e:
|
| 339 |
+
print(e)
|
| 340 |
+
input_save_name = f"processed_input_{int(time.time())}.obj"
|
| 341 |
+
mesh.export(input_save_name)
|
| 342 |
+
input_render_res = wireframe_render(mesh)
|
| 343 |
+
|
| 344 |
+
pc_coor = pc_coor / np.abs(pc_coor).max() * 0.99 # input should be from -1 to 1
|
| 345 |
+
|
| 346 |
+
assert (np.linalg.norm(normals, axis=-1) > 0.99).all(), "normals should be unit vectors, something wrong"
|
| 347 |
+
normalized_pc_normal = np.concatenate([pc_coor, normals], axis=-1, dtype=np.float16)
|
| 348 |
+
|
| 349 |
+
input = torch.tensor(normalized_pc_normal, dtype=torch.float16, device=device)[None]
|
| 350 |
+
print("Data loaded")
|
| 351 |
+
|
| 352 |
+
# with accelerator.autocast():
|
| 353 |
+
with accelerator.autocast():
|
| 354 |
+
outputs = model(input, do_sampling)
|
| 355 |
+
print("Model inference done")
|
| 356 |
+
recon_mesh = outputs[0]
|
| 357 |
+
|
| 358 |
+
valid_mask = torch.all(~torch.isnan(recon_mesh.reshape((-1, 9))), dim=1)
|
| 359 |
+
recon_mesh = recon_mesh[valid_mask] # nvalid_face x 3 x 3
|
| 360 |
+
vertices = recon_mesh.reshape(-1, 3).cpu()
|
| 361 |
+
vertices_index = np.arange(len(vertices)) # 0, 1, ..., 3 x face
|
| 362 |
+
triangles = vertices_index.reshape(-1, 3)
|
| 363 |
+
|
| 364 |
+
artist_mesh = trimesh.Trimesh(vertices=vertices, faces=triangles, force="mesh",
|
| 365 |
+
merge_primitives=True)
|
| 366 |
+
|
| 367 |
+
artist_mesh.merge_vertices()
|
| 368 |
+
artist_mesh.update_faces(artist_mesh.nondegenerate_faces())
|
| 369 |
+
artist_mesh.update_faces(artist_mesh.unique_faces())
|
| 370 |
+
artist_mesh.remove_unreferenced_vertices()
|
| 371 |
+
artist_mesh.fix_normals()
|
| 372 |
+
|
| 373 |
+
if artist_mesh.visual.vertex_colors is not None:
|
| 374 |
+
orange_color = np.array([255, 165, 0, 255], dtype=np.uint8)
|
| 375 |
+
|
| 376 |
+
artist_mesh.visual.vertex_colors = np.tile(orange_color, (artist_mesh.vertices.shape[0], 1))
|
| 377 |
+
else:
|
| 378 |
+
orange_color = np.array([255, 165, 0, 255], dtype=np.uint8)
|
| 379 |
+
artist_mesh.visual.vertex_colors = np.tile(orange_color, (artist_mesh.vertices.shape[0], 1))
|
| 380 |
+
|
| 381 |
+
num_faces = len(artist_mesh.faces)
|
| 382 |
+
|
| 383 |
+
brown_color = np.array([165, 42, 42, 255], dtype=np.uint8)
|
| 384 |
+
face_colors = np.tile(brown_color, (num_faces, 1))
|
| 385 |
+
|
| 386 |
+
artist_mesh.visual.face_colors = face_colors
|
| 387 |
+
# add time stamp to avoid cache
|
| 388 |
+
save_name = f"output_{int(time.time())}.obj"
|
| 389 |
+
artist_mesh.export(save_name)
|
| 390 |
+
output_render = wireframe_render(artist_mesh)
|
| 391 |
+
return input_save_name, input_render_res, save_name, output_render
|
| 392 |
+
|
| 393 |
###############################################################################
|
| 394 |
# Gradio
|
| 395 |
###############################################################################
|
|
|
|
| 496 |
gr.Markdown("Note: The model shown here has a darker appearance. Download to get correct results.")
|
| 497 |
with gr.Row():
|
| 498 |
gr.Markdown('''Try a different <b>seed value</b> if the result is unsatisfying (Default: 42).''')
|
| 499 |
+
|
| 500 |
+
|
| 501 |
mv_images = gr.State()
|
| 502 |
|
| 503 |
step1_submit.click(fn=check_input_image, inputs=[input_image]).success(
|
|
|
|
| 513 |
inputs=[mv_images],
|
| 514 |
outputs=[output_model_obj, output_model_glb]
|
| 515 |
)
|
| 516 |
+
|
| 517 |
+
gr.Markdown(STEP2_HEADER)
|
| 518 |
+
with gr.Row(variant="panel"):
|
| 519 |
+
with gr.Column():
|
| 520 |
+
with gr.Row():
|
| 521 |
+
input_3d = gr.Model3D(
|
| 522 |
+
label="Input Mesh",
|
| 523 |
+
display_mode="wireframe",
|
| 524 |
+
clear_color=[1,1,1,1],
|
| 525 |
+
)
|
| 526 |
+
|
| 527 |
+
with gr.Row():
|
| 528 |
+
with gr.Group():
|
| 529 |
+
do_marching_cubes = gr.Checkbox(label="Preprocess with Marching Cubes", value=False)
|
| 530 |
+
do_sampling = gr.Checkbox(label="Random Sampling", value=False)
|
| 531 |
+
sample_seed = gr.Number(value=0, label="Seed Value", precision=0)
|
| 532 |
+
|
| 533 |
+
with gr.Row():
|
| 534 |
+
submit = gr.Button("Generate", elem_id="generate", variant="primary")
|
| 535 |
+
|
| 536 |
+
with gr.Row(variant="panel"):
|
| 537 |
+
mesh_examples = gr.Examples(
|
| 538 |
+
examples=[
|
| 539 |
+
os.path.join("examples", img_name) for img_name in sorted(os.listdir("examples"))
|
| 540 |
+
],
|
| 541 |
+
inputs=input_3d,
|
| 542 |
+
outputs=[preprocess_model_obj, input_image_render, output_model_obj, output_image_render],
|
| 543 |
+
fn=do_inference,
|
| 544 |
+
cache_examples = False,
|
| 545 |
+
examples_per_page=10
|
| 546 |
+
)
|
| 547 |
+
|
| 548 |
+
with gr.Column():
|
| 549 |
+
with gr.Row():
|
| 550 |
+
input_image_render.render()
|
| 551 |
+
with gr.Row():
|
| 552 |
+
with gr.Tab("OBJ"):
|
| 553 |
+
preprocess_model_obj.render()
|
| 554 |
+
with gr.Row():
|
| 555 |
+
output_image_render.render()
|
| 556 |
+
with gr.Row():
|
| 557 |
+
with gr.Tab("OBJ"):
|
| 558 |
+
output_model_obj.render()
|
| 559 |
+
with gr.Row():
|
| 560 |
+
gr.Markdown('''Try click random sampling and different <b>Seed Value</b> if the result is unsatisfying''')
|
| 561 |
+
|
| 562 |
+
submit.click(
|
| 563 |
+
fn=do_inference,
|
| 564 |
+
inputs=[input_3d, sample_seed, do_sampling, do_marching_cubes],
|
| 565 |
+
outputs=[preprocess_model_obj, input_image_render, output_model_obj, output_image_render],
|
| 566 |
+
)
|
| 567 |
+
|
| 568 |
gr.Markdown(STEP3_HEADER)
|
| 569 |
gr.Markdown(STEP4_HEADER)
|
| 570 |
|