File size: 1,370 Bytes
92913ed
 
 
 
 
59d1d33
92913ed
 
 
 
941c44c
59d1d33
941c44c
 
59d1d33
941c44c
 
59d1d33
 
 
941c44c
 
 
 
 
 
 
 
 
92913ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59d1d33
 
 
 
 
 
11f4e8a
 
 
c3c7548
92913ed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import gradio as gr
import requests.exceptions
from huggingface_hub import HfApi, hf_hub_download
from huggingface_hub.repocard import metadata_load

def load_agent(model_id):
    """
    This function load the agent's video and results
    :return: video_path
    """
    # Load the metrics
    metadata = get_metadata(model_id)
    
    # Get the accuracy
    results = parse_metrics_accuracy(metadata)
    
    # Load the video
    video_path = hf_hub_download(model_id, filename="replay.mp4")

    return video_path, results


def parse_metrics_accuracy(meta):
    if "model-index" not in meta:
        return None
    result = meta["model-index"][0]["results"]
    metrics = result[0]["metrics"]
    accuracy = metrics[0]["value"]
    return accuracy

def get_metadata(model_id):
    """
    Get the metadata of the model repo
    :param model_id:
    :return: metadata
    """
    try:
        readme_path = hf_hub_download(model_id, filename="README.md")
        metadata = metadata_load(readme_path)
        print(metadata)
        return metadata
    except requests.exceptions.HTTPError:
        return None


agent1 = gr.Interface(load_agent, gr.Textbox(
            label="model_1",
        ), ["video", "text"])
agent2 = gr.Interface(load_agent,  gr.Textbox(
            label="model_2",
        ), ["video", "text"])



gr.Series(agent1, agent2).launch()