Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import sys
|
| 3 |
+
import random
|
| 4 |
+
import statistics
|
| 5 |
+
import numpy as np
|
| 6 |
+
import matplotlib.pyplot as plt
|
| 7 |
+
import threading
|
| 8 |
+
import time
|
| 9 |
+
import queue
|
| 10 |
+
sys.path.append(os.path.abspath("../lib"))
|
| 11 |
+
sys.path.append(os.path.abspath("../supv"))
|
| 12 |
+
sys.path.append(os.path.abspath("../text"))
|
| 13 |
+
from util import *
|
| 14 |
+
from sampler import *
|
| 15 |
+
from tnn import *
|
| 16 |
+
from txproc import *
|
| 17 |
+
|
| 18 |
+
emailDoms = ["yahoo.com", "gmail.com", "hotmail.com", "aol.com"]
|
| 19 |
+
|
| 20 |
+
st.title("Duplicate Records Prediction")
|
| 21 |
+
|
| 22 |
+
def printNgramVec(ngv):
|
| 23 |
+
"""
|
| 24 |
+
print ngram vector
|
| 25 |
+
"""
|
| 26 |
+
print("ngram vector")
|
| 27 |
+
for i in range(len(ngv)):
|
| 28 |
+
if ngv[i] > 0:
|
| 29 |
+
print("{} {}".format(i, ngv[i]))
|
| 30 |
+
|
| 31 |
+
def createNegMatch(tdata, ri):
|
| 32 |
+
"""
|
| 33 |
+
create negative match by randomly selecting another record
|
| 34 |
+
"""
|
| 35 |
+
nri = randomInt(0, len(tdata)-1)
|
| 36 |
+
while nri == ri:
|
| 37 |
+
nri = randomInt(0, len(tdata)-1)
|
| 38 |
+
return tdata[nri]
|
| 39 |
+
|
| 40 |
+
def createNgramCreator():
|
| 41 |
+
""" create ngram creator """
|
| 42 |
+
cng = CharNGram(["lcc", "ucc", "dig"], 3, True)
|
| 43 |
+
spc = ["@", "#", "_", "-", "."]
|
| 44 |
+
cng.addSpChar(spc)
|
| 45 |
+
cng.setWsRepl("$")
|
| 46 |
+
cng.finalize()
|
| 47 |
+
return cng
|
| 48 |
+
|
| 49 |
+
def getSim(rec, incOutput=True):
|
| 50 |
+
""" get rec pair similarity """
|
| 51 |
+
#print(rec)
|
| 52 |
+
sim = list()
|
| 53 |
+
for i in range(6):
|
| 54 |
+
#print("field " + str(i))
|
| 55 |
+
if i == 3:
|
| 56 |
+
s = levenshteinSimilarity(rec[i],rec[i+6])
|
| 57 |
+
else:
|
| 58 |
+
ngv1 = cng.toMgramCount(rec[i])
|
| 59 |
+
ngv2 = cng.toMgramCount(rec[i+6])
|
| 60 |
+
#printNgramVec(ngv1)
|
| 61 |
+
#printNgramVec(ngv2)
|
| 62 |
+
s = cosineSimilarity(ngv1, ngv2)
|
| 63 |
+
sim.append(s)
|
| 64 |
+
ss = toStrFromList(sim, 6)
|
| 65 |
+
srec = ss + "," + rec[-1] if incOutput else ss
|
| 66 |
+
return srec
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
class SimThread (threading.Thread):
|
| 70 |
+
""" multi threaded similarity calculation """
|
| 71 |
+
|
| 72 |
+
def __init__(self, tName, cng, qu, incOutput, outQu, outQuSize):
|
| 73 |
+
""" initialize """
|
| 74 |
+
threading.Thread.__init__(self)
|
| 75 |
+
self.tName = tName
|
| 76 |
+
self.cng = cng
|
| 77 |
+
self.qu = qu
|
| 78 |
+
self.incOutput = incOutput
|
| 79 |
+
self.outQu = outQu
|
| 80 |
+
self.outQuSize = outQuSize
|
| 81 |
+
|
| 82 |
+
def run(self):
|
| 83 |
+
""" exeution """
|
| 84 |
+
while not exitFlag:
|
| 85 |
+
rec = dequeue(self.qu, workQuLock)
|
| 86 |
+
if rec is not None:
|
| 87 |
+
srec = getSim(rec, self.incOutput)
|
| 88 |
+
if outQu is None:
|
| 89 |
+
print(srec)
|
| 90 |
+
else:
|
| 91 |
+
enqueue(srec, self.outQu, outQuLock, self.outQuSize)
|
| 92 |
+
|
| 93 |
+
def createThreads(nworker, cng, workQu, incOutput, outQu, outQuSize):
|
| 94 |
+
"""create worker threads """
|
| 95 |
+
threadList = list(map(lambda i : "Thread-" + str(i+1), range(nworker)))
|
| 96 |
+
threads = list()
|
| 97 |
+
for tName in threadList:
|
| 98 |
+
thread = SimThread(tName, cng, workQu, incOutput, outQu, outQuSize)
|
| 99 |
+
thread.start()
|
| 100 |
+
threads.append(thread)
|
| 101 |
+
return threads
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
def enqueue(rec, qu, quLock, qSize):
|
| 105 |
+
""" enqueue record """
|
| 106 |
+
queued = False
|
| 107 |
+
while not queued:
|
| 108 |
+
quLock.acquire()
|
| 109 |
+
if qu.qsize() < qSize - 1:
|
| 110 |
+
qu.put(rec)
|
| 111 |
+
queued = True
|
| 112 |
+
quLock.release()
|
| 113 |
+
time.sleep(1)
|
| 114 |
+
|
| 115 |
+
def dequeue(qu, quLock):
|
| 116 |
+
""" dequeue record """
|
| 117 |
+
rec = None
|
| 118 |
+
quLock.acquire()
|
| 119 |
+
if not qu.empty():
|
| 120 |
+
rec = qu.get()
|
| 121 |
+
quLock.release()
|
| 122 |
+
|
| 123 |
+
return rec
|
| 124 |
+
|
| 125 |
+
test_file = 'pers_new_dup.txt'
|
| 126 |
+
exist_file = 'pers_exist.txt'
|
| 127 |
+
prop_file = 'tnn_disamb.properties'
|
| 128 |
+
|
| 129 |
+
def predict_main(test_file,exist_file,prop_file):
|
| 130 |
+
#multi threading related
|
| 131 |
+
workQuLock = threading.Lock()
|
| 132 |
+
outQuLock = threading.Lock()
|
| 133 |
+
exitFlag = False
|
| 134 |
+
|
| 135 |
+
""" predict with neural network model """
|
| 136 |
+
newFilePath = test_file
|
| 137 |
+
existFilePath = exist_file
|
| 138 |
+
nworker = 1
|
| 139 |
+
prFile = prop_file
|
| 140 |
+
|
| 141 |
+
regr = FeedForwardNetwork(prFile)
|
| 142 |
+
regr.buildModel()
|
| 143 |
+
cng = createNgramCreator()
|
| 144 |
+
|
| 145 |
+
#create threads
|
| 146 |
+
qSize = 100
|
| 147 |
+
workQu = queue.Queue(qSize)
|
| 148 |
+
outQu = queue.Queue(qSize)
|
| 149 |
+
threads = createThreads(nworker, cng, workQu, False, outQu, qSize)
|
| 150 |
+
|
| 151 |
+
for nrec in fileRecGen(newFilePath):
|
| 152 |
+
srecs = list()
|
| 153 |
+
ecount = 0
|
| 154 |
+
y_pred = []
|
| 155 |
+
#print("processing ", nrec)
|
| 156 |
+
for erec in fileRecGen(existFilePath):
|
| 157 |
+
rec = nrec.copy()
|
| 158 |
+
rec.extend(erec)
|
| 159 |
+
#print(rec)
|
| 160 |
+
|
| 161 |
+
enqueue(rec, workQu, workQuLock, qSize)
|
| 162 |
+
srec = dequeue(outQu, outQuLock)
|
| 163 |
+
if srec is not None:
|
| 164 |
+
srecs.append(strToFloatArray(srec))
|
| 165 |
+
ecount += 1
|
| 166 |
+
|
| 167 |
+
#wait til workq queue is drained
|
| 168 |
+
while not workQu.empty():
|
| 169 |
+
pass
|
| 170 |
+
|
| 171 |
+
#drain out queue
|
| 172 |
+
while len(srecs) < ecount:
|
| 173 |
+
srec = dequeue(outQu, outQuLock)
|
| 174 |
+
if srec is not None:
|
| 175 |
+
srecs.append(strToFloatArray(srec))
|
| 176 |
+
#predict
|
| 177 |
+
simMax = 0
|
| 178 |
+
sims = FeedForwardNetwork.predict(regr, srecs)
|
| 179 |
+
sims = sims.reshape(sims.shape[0])
|
| 180 |
+
y_pred.append(max(sims))
|
| 181 |
+
#print("{} {:.3f}".format(nrec, y_pred))
|
| 182 |
+
print(nrec, max(y_pred))
|
| 183 |
+
|
| 184 |
+
# exitFlag = True
|
| 185 |
+
|
| 186 |
+
predict_main(test_file,exist_file,prop_file)
|
| 187 |
+
|
| 188 |
+
st.header("End")
|