Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	File size: 30,702 Bytes
			
			| 4610f7a | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 | #!/usr/local/bin/python3
# avenir-python: Machine Learning
# Author: Pranab Ghosh
# 
# Licensed under the Apache License, Version 2.0 (the "License"); you
# may not use this file except in compliance with the License. You may
# obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0 
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied. See the License for the specific language governing
# permissions and limitations under the License.
import sys
import random 
import time
import math
import random
import numpy as np
from scipy import stats
from random import randint
from .util import *
from .stats import Histogram
def randomFloat(low, high):
	"""
	sample float within range
	Parameters
		low : low valuee
		high : high valuee
	"""
	return random.random() * (high-low) + low
def randomInt(minv, maxv):
	"""
	sample int within range
	Parameters
		minv : low valuee
		maxv : high valuee
	"""
	return randint(minv, maxv)
	
def randIndex(lData):
	"""
	random index of a list
	Parameters
		lData : list data
	"""
	return randint(0, len(lData)-1)
def randomUniformSampled(low, high):
	"""
	sample float within range
	
	Parameters
		low : low value
		high : high value
	"""
	return np.random.uniform(low, high)
def randomUniformSampledList(low, high, size):
	"""
	sample floats within range to create list
	Parameters
		low : low value
		high : high value
		size ; size of list to be returned
	"""
	return np.random.uniform(low, high, size)
def randomNormSampled(mean, sd):
	"""
	sample float from normal
	Parameters
		mean : mean
		sd : std deviation
	"""
	return np.random.normal(mean, sd)
	
def randomNormSampledList(mean, sd, size):
	"""
	sample float list from normal 
	Parameters
		mean : mean
		sd : std deviation
		size : size of list to be returned
	"""
	return np.random.normal(mean, sd, size)
def randomSampledList(sampler, size):
	"""
	sample list from given sampler 
	Parameters
		sampler : sampler object
		size : size of list to be returned
	"""
	return list(map(lambda i : sampler.sample(), range(size)))
	
def minLimit(val, minv):
	"""
	min limit
	
	Parameters
		val : value
		minv : min limit
	"""
	if (val < minv):
		val = minv
	return val
	
def rangeLimit(val, minv, maxv):
	"""
	range limit
	Parameters
		val : value
		minv : min limit
		maxv : max limit
	"""
	if (val < minv):
		val = minv
	elif (val > maxv):
		val = maxv
	return val
def sampleUniform(minv, maxv):
	"""
	sample int within range
	Parameters
		minv ; int min limit
		maxv : int max limit
	"""
	return randint(minv, maxv)
def sampleFromBase(value, dev):
	"""
	sample int wrt base
	Parameters
		value : base value
		dev : deviation
	"""
	return randint(value - dev, value + dev)
def sampleFloatFromBase(value, dev):
	"""
	sample float wrt base
	Parameters
		value : base value
		dev : deviation
	"""
	return randomFloat(value - dev, value + dev)
def distrUniformWithRanndom(total, numItems, noiseLevel):
	"""
	uniformly distribute with some randomness and preserves total
	Parameters
		total : total count
		numItems : no of bins
		noiseLevel : noise level fraction
	"""
	perItem = total / numItems
	var = perItem * noiseLevel
	items = []
	for i in range(numItems):
		item = perItem + randomFloat(-var, var)
		items.append(item)	
	
	#adjust last item
	sm = sum(items[:-1])
	items[-1] = total - sm
	return items
def isEventSampled(threshold, maxv=100):
	"""
	sample event which occurs if sampled below threshold
	Parameters
		threshold : threshold for sampling
		maxv : maximum values
	"""
	return randint(0, maxv) < threshold
def sampleBinaryEvents(events, probPercent):
	"""
	sample binary events
	Parameters
		events : two events
		probPercent : probability as percentage
	"""
	if (randint(0, 100) < probPercent):
		event = events[0]
	else:
		event = events[1]
	return event
def addNoiseNum(value, sampler):
	"""
	add noise to numeric value
	Parameters
		value : base value
		sampler : sampler for noise
	"""
	return value * (1 + sampler.sample())
	
def addNoiseCat(value, values, noise):	
	"""
	add noise to categorical value i.e with some probability change value
	Parameters
		value : cat value
		values : cat values
		noise : noise level fraction
	"""
	newValue = value
	threshold = int(noise * 100)
	if (isEventSampled(threshold)):		
		newValue = selectRandomFromList(values)
		while newValue == value:
			newValue = selectRandomFromList(values)
	return newValue
def sampleWithReplace(data, sampSize):
	"""
	sample with replacement
	Parameters
		data : array
		sampSize : sample size
	"""
	sampled = list()
	le = len(data)
	if sampSize is None:
		sampSize = le
	for i in range(sampSize):
		j = random.randint(0, le - 1)
		sampled.append(data[j])
	return sampled
class CumDistr:
	"""
	cumulative distr
	"""
	
	def __init__(self, data, numBins = None):
		"""
		initializer
		
		Parameters
			data : array
			numBins : no of bins
		"""
		if not numBins:
			numBins = int(len(data) / 5)
		res = stats.cumfreq(data, numbins=numBins)
		self.cdistr = res.cumcount / len(data)
		self.loLim = res.lowerlimit
		self.upLim = res.lowerlimit + res.binsize * res.cumcount.size
		self.binWidth = res.binsize
		
	def getDistr(self, value):
		"""
		get cumulative distribution
		
		Parameters
			value : value
		"""
		if value <= self.loLim:
			d = 0.0
		elif value >= self.upLim:
			d = 1.0
		else:
			bin = int((value - self.loLim) / self.binWidth)
			d = self.cdistr[bin]
		return d
class BernoulliTrialSampler:
	"""
	bernoulli trial sampler return True or False
	"""
	
	def __init__(self, pr, events=None):
		"""
		initializer
		
		Parameters
			pr : probability
			events : event values
		"""
		self.pr = pr
		self.retEvent = False if events is None else True
		self.events = events
		
	
	def sample(self):
		"""
		samples value
		"""
		res = random.random() < self.pr
		if self.retEvent:
			res = self.events[0] if res else self.events[1]
		return res
	
class PoissonSampler:
	"""
	poisson sampler returns number of events
	"""
	def __init__(self, rateOccur, maxSamp):
		"""
		initializer
		
		Parameters
			rateOccur : rate of occurence
			maxSamp : max limit on no of samples
		"""
		self.rateOccur = rateOccur
		self.maxSamp = int(maxSamp)
		self.pmax = self.calculatePr(rateOccur)
	def calculatePr(self, numOccur):
		"""
		calulates probability
		
		Parameters
			numOccur : no of occurence
		"""
		p = (self.rateOccur ** numOccur) * math.exp(-self.rateOccur) / math.factorial(numOccur)
		return p
	def sample(self):
		"""
		samples value
		"""
		done = False
		samp = 0
		while not done:
			no = randint(0, self.maxSamp)
			sp = randomFloat(0.0, self.pmax)
			ap = self.calculatePr(no)
			if sp < ap:
				done = True
				samp = no
		return samp
class ExponentialSampler:
	"""
	returns interval between events
	"""
	def __init__(self, rateOccur, maxSamp = None):
		"""
		initializer
		
		Parameters
			rateOccur : rate of occurence
			maxSamp : max limit on interval
		"""
		self.interval = 1.0 / rateOccur
		self.maxSamp = int(maxSamp) if maxSamp is not None else None
	def sample(self):
		"""
		samples value
		"""
		sampled = np.random.exponential(scale=self.interval)
		if self.maxSamp is not None:
			while sampled > self.maxSamp:
				sampled = np.random.exponential(scale=self.interval)
		return sampled
class UniformNumericSampler:
	"""
	uniform sampler for numerical values
	"""
	def __init__(self, minv, maxv):
		"""
		initializer
		
		Parameters
			minv : min value
			maxv : max value
		"""
		self.minv = minv
		self.maxv = maxv
	def isNumeric(self):
		"""
		returns true
		"""
		return True
	
	def sample(self):
		"""
		samples value
		"""
		samp =	sampleUniform(self.minv, self.maxv) if isinstance(self.minv, int) else randomFloat(self.minv, self.maxv)
		return samp	
class UniformCategoricalSampler:
	"""
	uniform sampler for categorical values
	"""
	def __init__(self, cvalues):
		"""
		initializer
		
		Parameters
			cvalues : categorical value list
		"""
		self.cvalues = cvalues
	
	def isNumeric(self):
		return False
	def sample(self):
		"""
		samples value
		"""
		return selectRandomFromList(self.cvalues)	
class NormalSampler:
	"""
	normal sampler
	"""
	def __init__(self, mean, stdDev):
		"""
		initializer
		
		Parameters
			mean : mean
			stdDev : std deviation
		"""
		self.mean = mean
		self.stdDev = stdDev
		self.sampleAsInt = False
	def isNumeric(self):
		return True
	def sampleAsIntValue(self):
		"""
		set True to sample as int
		"""
		self.sampleAsInt = True
		
	def sample(self):
		"""
		samples value
		"""
		samp =  np.random.normal(self.mean, self.stdDev)
		if self.sampleAsInt:
			samp = int(samp)
		return samp
				
class LogNormalSampler:
	"""
	log normal sampler
	"""
	def __init__(self, mean, stdDev):
		"""
		initializer
		
		Parameters
			mean : mean
			stdDev : std deviation
		"""
		self.mean = mean
		self.stdDev = stdDev
	def isNumeric(self):
		return True
	def sample(self):
		"""
		samples value
		"""
		return np.random.lognormal(self.mean, self.stdDev)
class NormalSamplerWithTrendCycle:
	"""
	normal sampler with cycle and trend
	"""
	def __init__(self, mean, stdDev, dmean, cycle,  step=1):
		"""
		initializer
		
		Parameters
			mean : mean
			stdDev : std deviation
			dmean : trend delta
			cycle : cycle values wrt base mean
			step : adjustment step for cycle and trend
		"""
		self.mean = mean
		self.cmean = mean
		self.stdDev = stdDev
		self.dmean = dmean
		self.cycle = cycle
		self.clen = len(cycle) if cycle is not None else 0
		self.step = step
		self.count = 0
	def isNumeric(self):
		return True
	def sample(self):
		"""
		samples value
		"""
		s = np.random.normal(self.cmean, self.stdDev)
		self.count += 1
		if self.count % self.step == 0:
			cy = 0
			if self.clen > 1:
				coff =  self.count % self.clen
				cy = self.cycle[coff]
			tr = self.count * self.dmean
			self.cmean = self.mean + tr + cy
		return s
class ParetoSampler:
	"""
	pareto sampler
	"""
	def __init__(self, mode, shape):
		"""
		initializer
		
		Parameters
			mode : mode
			shape : shape
		"""
		self.mode = mode
		self.shape = shape
	def isNumeric(self):
		return True
	def sample(self):
		"""
		samples value
		"""
		return (np.random.pareto(self.shape) + 1) * self.mode
class GammaSampler:
	"""
	pareto sampler
	"""
	def __init__(self, shape, scale):
		"""
		initializer
		
		Parameters
			shape : shape
			scale : scale
		"""
		self.shape = shape
		self.scale = scale
	def isNumeric(self):
		return True
	def sample(self):
		"""
		samples value
		"""
		return np.random.gamma(self.shape, self.scale)
class GaussianRejectSampler:
	"""
	gaussian sampling based on rejection sampling
	"""
	def __init__(self, mean, stdDev):
		"""
		initializer
		
		Parameters
			mean : mean
			stdDev : std deviation
		"""
		self.mean = mean
		self.stdDev = stdDev
		self.xmin = mean - 3 * stdDev
		self.xmax = mean + 3 * stdDev
		self.ymin = 0.0
		self.fmax = 1.0 / (math.sqrt(2.0 * 3.14) * stdDev)
		self.ymax = 1.05 * self.fmax
		self.sampleAsInt = False
		
	def isNumeric(self):
		return True
	
	def sampleAsIntValue(self):
		"""
		sample as int value
		"""
		self.sampleAsInt = True
	def sample(self):
		"""
		samples value
		"""
		done = False
		samp = 0
		while not done:
			x = randomFloat(self.xmin, self.xmax)
			y = randomFloat(self.ymin, self.ymax)
			f = self.fmax * math.exp(-(x - self.mean) * (x - self.mean) / (2.0 * self.stdDev * self.stdDev))
			if (y < f):
				done = True
				samp = x
		if self.sampleAsInt:
			samp = int(samp)
		return samp
class DiscreteRejectSampler:
	"""
	non parametric sampling for discrete values  using given distribution based 
	on rejection sampling	
	"""
	def __init__(self,  xmin, xmax, step, *values):
		"""
		initializer
		
		Parameters
			xmin : min  value
			xmax : max  value
			step : discrete step
			values : distr values
		"""
		self.xmin = xmin
		self.xmax = xmax
		self.step = step
		self.distr = values
		if (len(self.distr) == 1):
			self.distr = self.distr[0]	
		numSteps = int((self.xmax - self.xmin) / self.step)
		#print("{:.3f} {:.3f} {:.3f} {}".format(self.xmin, self.xmax, self.step, numSteps))
		assert len(self.distr)	== numSteps + 1, "invalid number of distr values expected {}".format(numSteps + 1)
		self.ximin = 0
		self.ximax = numSteps
		self.pmax = float(max(self.distr))
	def isNumeric(self):
		return True
	def sample(self):
		"""
		samples value
		"""
		done = False
		samp = None
		while not done:
			xi = randint(self.ximin, self.ximax)
			#print(formatAny(xi, "xi"))
			ps = randomFloat(0.0, self.pmax)
			pa = self.distr[xi]
			if ps < pa:
				samp = self.xmin + xi  * self.step
				done = True
		return samp
class TriangularRejectSampler:
	"""
	non parametric sampling using triangular distribution based on rejection sampling	
	"""
	def __init__(self, xmin, xmax, vertexValue, vertexPos=None):
		"""
		initializer
		
		Parameters
			xmin : min  value
			xmax : max  value
			vertexValue : distr value at vertex
			vertexPos : vertex pposition
		"""
		self.xmin = xmin
		self.xmax = xmax
		self.vertexValue = vertexValue
		if vertexPos: 
			assert vertexPos > xmin and vertexPos < xmax, "vertex position outside bound"
			self.vertexPos = vertexPos
		else:
			self.vertexPos = 0.5 * (xmin + xmax)
		self.s1 = vertexValue / (self.vertexPos - xmin)
		self.s2 = vertexValue / (xmax - self.vertexPos)
	def isNumeric(self):
		return True
		
	def sample(self):
		"""
		samples value
		"""
		done = False
		samp = None
		while not done:
			x = randomFloat(self.xmin, self.xmax)
			y = randomFloat(0.0, self.vertexValue)
			f = (x - self.xmin) * self.s1 if x < self.vertexPos else (self.xmax - x) * self.s2
			if (y < f):
				done = True
				samp = x
			
		return samp;	
class NonParamRejectSampler:
	"""
	non parametric sampling using given distribution based on rejection sampling	
	"""
	def __init__(self, xmin, binWidth, *values):
		"""
		initializer
		
		Parameters
			xmin : min  value
			binWidth : bin width
			values : distr values
		"""
		self.values = values
		if (len(self.values) == 1):
			self.values = self.values[0]
		self.xmin = xmin
		self.xmax = xmin + binWidth * (len(self.values) - 1)
		#print(self.xmin, self.xmax, binWidth)
		self.binWidth = binWidth
		self.fmax = 0
		for v in self.values:
			if (v > self.fmax):
				self.fmax = v
		self.ymin = 0
		self.ymax = self.fmax
		self.sampleAsInt = True
	def isNumeric(self):
		return True
		
	def sampleAsFloat(self):
		self.sampleAsInt = False
	
	def sample(self):
		"""
		samples value
		"""
		done = False
		samp = 0
		while not done:
			if self.sampleAsInt:
				x = random.randint(self.xmin, self.xmax)
				y = random.randint(self.ymin, self.ymax)
			else:
				x = randomFloat(self.xmin, self.xmax)
				y = randomFloat(self.ymin, self.ymax)
			bin = int((x - self.xmin) / self.binWidth)
			f = self.values[bin]
			if (y < f):
				done = True
				samp = x
		return samp
class JointNonParamRejectSampler:
	"""
	non parametric sampling using given distribution based on rejection sampling	
	"""
	def __init__(self, xmin, xbinWidth, xnbin, ymin, ybinWidth, ynbin, *values):
		"""
		initializer
		
		Parameters
			xmin : min  value for x
			xbinWidth : bin width for x
			xnbin : no of bins for x
			ymin : min  value for y
			ybinWidth : bin width for y
			ynbin : no of bins for y
			values : distr values
		"""
		self.values = values
		if (len(self.values) == 1):
			self.values = self.values[0]
		assert len(self.values) ==  xnbin * ynbin, "wrong number of values for joint distr"
		self.xmin = xmin
		self.xmax = xmin + xbinWidth * xnbin
		self.xbinWidth = xbinWidth
		self.ymin = ymin
		self.ymax = ymin + ybinWidth * ynbin
		self.ybinWidth = ybinWidth
		self.pmax = max(self.values)
		self.values = np.array(self.values).reshape(xnbin, ynbin)
	def isNumeric(self):
		return True
	def sample(self):
		"""
		samples value
		"""
		done = False
		samp = 0
		while not done:
			x = randomFloat(self.xmin, self.xmax)
			y = randomFloat(self.ymin, self.ymax)
			xbin = int((x - self.xmin) / self.xbinWidth)
			ybin = int((y - self.ymin) / self.ybinWidth)
			ap = self.values[xbin][ybin]
			sp = randomFloat(0.0, self.pmax)
			if (sp < ap):
				done = True
				samp = [x,y]
		return samp
class JointNormalSampler:
	"""
	joint normal sampler	
	"""
	def __init__(self, *values):
		"""
		initializer
		
		Parameters
			values : 2 mean values followed by 4 values for covar matrix
		"""
		lvalues = list(values)
		assert len(lvalues) == 6, "incorrect number of arguments for joint normal sampler"
		mean = lvalues[:2]
		self.mean = np.array(mean)
		sd = lvalues[2:]
		self.sd = np.array(sd).reshape(2,2)
	def isNumeric(self):
		return True
		
	def sample(self):
		"""
		samples value
		"""
		return list(np.random.multivariate_normal(self.mean, self.sd))
		
		
class MultiVarNormalSampler:
	"""
	muti variate normal sampler	
	"""
	def __init__(self, numVar, *values):
		"""
		initializer
		
		Parameters
			numVar : no of variables
			values : numVar mean values followed by numVar x numVar values for covar matrix
		"""
		lvalues = list(values)
		assert len(lvalues) == numVar + numVar * numVar, "incorrect number of arguments for multi var normal sampler"
		mean = lvalues[:numVar]
		self.mean = np.array(mean)
		sd = lvalues[numVar:]
		self.sd = np.array(sd).reshape(numVar,numVar)
	def isNumeric(self):
		return True
		
	def sample(self):
		"""
		samples value
		"""
		return list(np.random.multivariate_normal(self.mean, self.sd))
class CategoricalRejectSampler:
	"""
	non parametric sampling for categorical attributes using given distribution based 
	on rejection sampling	
	"""
	def __init__(self,  *values):
		"""
		initializer
		
		Parameters
			values : list of tuples which contains a categorical value and the corresponsding distr value
		"""
		self.distr = values
		if (len(self.distr) == 1):
			self.distr = self.distr[0]
		maxv = 0
		for t in self.distr:
			if t[1] > maxv:
				maxv = t[1]
		self.maxv = maxv
		
	def sample(self):
		"""
		samples value
		"""
		done = False
		samp = ""
		while not done:
			t = self.distr[randint(0, len(self.distr)-1)]	
			d = randomFloat(0, self.maxv)	
			if (d <= t[1]):
				done = True
				samp = t[0]
		return samp
class CategoricalSetSampler:
	"""
	non parametric sampling for categorical attributes using uniform distribution based for 
	sampling a set of values from all values
	"""
	def __init__(self,  *values):
		"""
		initializer
		
		Parameters
			values : list which contains a categorical values
		"""
		self.values = values
		if (len(self.values) == 1):
			self.values = self.values[0]
		self.sampled = list()
		
	def sample(self):
		"""
		samples value only from previously unsamopled
		"""
		samp = selectRandomFromList(self.values)
		while True:
			if samp in self.sampled:
				samp = selectRandomFromList(self.values)
			else:
				self.sampled.append(samp)
				break
		return samp
	
	def setSampled(self, sampled):
		"""
		set already sampled
		
		Parameters
			sampled : already sampled list
		"""
		self.sampled  = sampled
				
	def unsample(self, sample=None):
		"""
		rempve from sample history
		
		Parameters
			sample : sample to be removed
		"""
		if sample is None:
			self.sampled.clear()
		else:	
			self.sampled.remove(sample)
class DistrMixtureSampler:
	"""
	distr mixture sampler
	"""
	def __init__(self,  mixtureWtDistr, *compDistr):
		"""
		initializer
		
		Parameters
			mixtureWtDistr : sampler that returns index into sampler list
			compDistr : sampler list
		"""
		self.mixtureWtDistr = mixtureWtDistr
		self.compDistr = compDistr
		if (len(self.compDistr) == 1):
			self.compDistr = self.compDistr[0]
			
	def isNumeric(self):
		return True
	
	def sample(self):
		"""
		samples value
		"""
		comp = self.mixtureWtDistr.sample()
		
		#sample  sampled comp distr
		return self.compDistr[comp].sample()
class AncestralSampler:
	"""
	ancestral sampler using conditional distribution
	"""
	def __init__(self,  parentDistr, childDistr, numChildren):
		"""
		initializer
		
		Parameters
			parentDistr : parent distr
			childDistr : childdren distribution dictionary
			numChildren : no of children
		"""
		self.parentDistr = parentDistr
		self.childDistr = childDistr
		self.numChildren = numChildren
	
	def sample(self):
		"""
		samples value
		"""
		parent = self.parentDistr.sample()
		
		#sample all children conditioned on parent
		children = []
		for i in range(self.numChildren):
			key = (parent, i)
			child = self.childDistr[key].sample()
			children.append(child)
		return (parent, children)
		
class ClusterSampler:
	"""
	sample cluster and then sample member of sampled cluster
	"""
	def __init__(self,  clusters, *clustDistr):
		"""
		initializer
		
		Parameters
			clusters : dictionary clusters
			clustDistr : distr for clusters
		"""
		self.sampler = CategoricalRejectSampler(*clustDistr)
		self.clusters = clusters
	
	def sample(self):
		"""
		samples value
		"""
		cluster = self.sampler.sample()
		member = random.choice(self.clusters[cluster])
		return (cluster, member)
		
	
class MetropolitanSampler:
	"""
	metropolitan sampler	
	"""
	def __init__(self, propStdDev, min, binWidth, values):
		"""
		initializer
		
		Parameters
			propStdDev : proposal distr std dev
			min : min domain value for target distr
			binWidth : bin width
			values : target distr values
		"""
		self.targetDistr = Histogram.createInitialized(min, binWidth, values)
		self.propsalDistr = GaussianRejectSampler(0, propStdDev)
		self.proposalMixture = False
		
		# bootstrap sample
		(minv, maxv) = self.targetDistr.getMinMax()
		self.curSample = random.randint(minv, maxv)
		self.curDistr = self.targetDistr.value(self.curSample)
		self.transCount = 0
	
	def initialize(self):
		"""
		initialize
		"""
		(minv, maxv) = self.targetDistr.getMinMax()
		self.curSample = random.randint(minv, maxv)
		self.curDistr = self.targetDistr.value(self.curSample)
		self.transCount = 0
	
	def setProposalDistr(self, propsalDistr):
		"""
		set custom proposal distribution
		Parameters
			propsalDistr : proposal distribution
		"""
		self.propsalDistr = propsalDistr
	
	def setGlobalProposalDistr(self, globPropStdDev, proposalChoiceThreshold):
		"""
		set custom proposal distribution
		Parameters
			globPropStdDev : global proposal distr std deviation
			proposalChoiceThreshold : threshold for using global proposal distribution
		"""
		self.globalProposalDistr = GaussianRejectSampler(0, globPropStdDev)
		self.proposalChoiceThreshold = proposalChoiceThreshold
		self.proposalMixture = True
	def sample(self):
		"""
		samples value
		"""
		nextSample = self.proposalSample(1)
		self.targetSample(nextSample)
		return self.curSample;
	
	def proposalSample(self, skip):
		"""
		sample from proposal distribution
		Parameters
			skip : no of samples to skip
		"""
		for i in range(skip):
			if not self.proposalMixture:
				#one proposal distr
				nextSample = self.curSample + self.propsalDistr.sample()
				nextSample = self.targetDistr.boundedValue(nextSample)
			else:
				#mixture of proposal distr
				if random.random() < self.proposalChoiceThreshold:
					nextSample = self.curSample + self.propsalDistr.sample()
				else:
					nextSample = self.curSample + self.globalProposalDistr.sample()
				nextSample = self.targetDistr.boundedValue(nextSample)
				
		return nextSample
	
	def targetSample(self, nextSample):
		"""
		target sample
		Parameters
			nextSample : proposal distr sample
		"""
		nextDistr = self.targetDistr.value(nextSample)
			
		transition = False
		if nextDistr > self.curDistr:
			transition = True
		else:
			distrRatio = float(nextDistr) / self.curDistr
			if random.random() < distrRatio:
				transition = True
					
		if transition:
			self.curSample = nextSample
			self.curDistr = nextDistr
			self.transCount += 1
	
	
	def subSample(self, skip):
		"""
		sub sample
		Parameters
			skip : no of samples to skip
		"""
		nextSample = self.proposalSample(skip)
		self.targetSample(nextSample)
		return self.curSample;
	def setMixtureProposal(self, globPropStdDev, mixtureThreshold):
		"""
		mixture proposal
		Parameters
			globPropStdDev : global proposal distr std deviation
			mixtureThreshold : threshold for using global proposal distribution
		"""
		self.globalProposalDistr = GaussianRejectSampler(0, globPropStdDev)
		self.mixtureThreshold = mixtureThreshold
	
	def samplePropsal(self):
		"""
		sample from proposal distr
		"""
		if self.globalPropsalDistr is None:
			proposal = self.propsalDistr.sample()
		else:
			if random.random() < self.mixtureThreshold:
				proposal = self.propsalDistr.sample()
			else:
				proposal = self.globalProposalDistr.sample()
		return proposal
class PermutationSampler:
	"""
	permutation sampler by shuffling a list
	"""
	def __init__(self):
		"""
		initialize
		"""
		self.values = None
		self.numShuffles = None
	
	@staticmethod
	def createSamplerWithValues(values, *numShuffles):
		"""
		creator with values
		Parameters
			values : list data
			numShuffles : no of shuffles or range of no of shuffles
		"""
		sampler = PermutationSampler()
		sampler.values = values
		sampler.numShuffles = numShuffles
		return sampler
		
	@staticmethod
	def createSamplerWithRange(minv, maxv, *numShuffles):
		"""
		creator with ramge min and max
		
		Parameters
			minv : min of range
			maxv : max of range
			numShuffles : no of shuffles or range of no of shuffles
		"""
		sampler = PermutationSampler()
		sampler.values = list(range(minv, maxv + 1))
		sampler.numShuffles = numShuffles
		return sampler
		
	def sample(self):
		"""
		sample new permutation
		"""
		cloned = self.values.copy()
		shuffle(cloned, *self.numShuffles)
		return cloned
	
class SpikeyDataSampler:
	"""
	samples spikey data
	"""
	def __init__(self, intvMean, intvScale, distr, spikeValueMean, spikeValueStd, spikeMaxDuration, baseValue = 0):
		"""
		initializer
		
		Parameters
			intvMean : interval mean
			intvScale : interval std dev
			distr : type of distr for interval
			spikeValueMean : spike value mean
			spikeValueStd : spike value std dev
			spikeMaxDuration : max duration for spike
			baseValue : base or offset value
		"""
		if distr == "norm":
			self.intvSampler = NormalSampler(intvMean, intvScale)
		elif distr == "expo":
			rate = 1.0 / intvScale
			self.intvSampler = ExponentialSampler(rate)
		else:
			raise ValueError("invalid distribution")
		self.spikeSampler = NormalSampler(spikeValueMean, spikeValueStd)
		self.spikeMaxDuration = spikeMaxDuration
		self.baseValue = baseValue
		self.inSpike = False
		self.spikeCount = 0
		self.baseCount = 0
		self.baseLength = int(self.intvSampler.sample())
		self.spikeValues = list()
		self.spikeLength = None
	def sample(self):
		"""
		sample new value
		"""
		if self.baseCount <= self.baseLength:
			sampled = self.baseValue
			self.baseCount += 1
		else:
			if not self.inSpike:
				#starting spike
				spikeVal = self.spikeSampler.sample()
				self.spikeLength = sampleUniform(1, self.spikeMaxDuration)
				spikeMaxPos = 0 if self.spikeLength == 1 else sampleUniform(0, self.spikeLength-1)
				self.spikeValues.clear()
				for i in range(self.spikeLength):
					if i < spikeMaxPos:
						frac = (i + 1) / (spikeMaxPos + 1)
						frac = sampleFloatFromBase(frac, 0.1 * frac)
					elif i > spikeMaxPos:
						frac =  (self.spikeLength - i) / (self.spikeLength - spikeMaxPos)
						frac = sampleFloatFromBase(frac, 0.1 * frac)
					else:
						frac = 1.0
					self.spikeValues.append(frac * spikeVal)
					self.inSpike = True
					self.spikeCount = 0
	
			sampled = self.spikeValues[self.spikeCount]
			self.spikeCount += 1
			if self.spikeCount == self.spikeLength:
				#ending spike
				self.baseCount = 0
				self.baseLength = int(self.intvSampler.sample())
				self.inSpike = False
		return sampled
class EventSampler:
	"""
	sample event
	"""
	def __init__(self, intvSampler, valSampler=None):
		"""
		initializer
		
		Parameters
			intvSampler : interval sampler
			valSampler : value sampler
		"""
		self.intvSampler = intvSampler
		self.valSampler = valSampler
		self.trigger = int(self.intvSampler.sample())
		self.count = 0
	
	def reset(self):
		"""
		reset trigger
		"""
		self.trigger = int(self.intvSampler.sample())
		self.count = 0
		
	def sample(self):
		"""
		sample event
		"""
		if self.count == self.trigger:
			sampled = self.valSampler.sample() if self.valSampler is not None else 1.0
			self.trigger = int(self.intvSampler.sample())
			self.count = 0
		else:
			sample = 0.0
			self.count += 1
		return sampled
			
			
		
def createSampler(data):
	"""
	create sampler
	
	Parameters
		data : sampler description
	"""
	#print(data)
	items = data.split(":")
	size = len(items)
	dtype = items[-1]
	stype = items[-2]
	#print("sampler data {}".format(data))
	#print("sampler {}".format(stype))
	sampler = None
	if stype == "uniform":
		if dtype == "int":
			min = int(items[0])
			max = int(items[1])
			sampler = UniformNumericSampler(min, max)
		elif dtype == "float":
			min = float(items[0])
			max = float(items[1])
			sampler = UniformNumericSampler(min, max)
		elif dtype == "categorical":
			values = items[:-2]
			sampler = UniformCategoricalSampler(values)
	elif stype == "normal":
			mean = float(items[0])
			sd = float(items[1])
			sampler = NormalSampler(mean, sd)
			if dtype == "int":
				sampler.sampleAsIntValue()
	elif stype == "nonparam":
		if dtype == "int" or dtype == "float":
			min = int(items[0])
			binWidth = int(items[1])
			values = items[2:-2]
			values = list(map(lambda v: int(v), values))
			sampler = NonParamRejectSampler(min, binWidth, values)
			if dtype == "float":
				sampler.sampleAsFloat()
		elif dtype == "categorical":
			values = list()
			for i in range(0, size-2, 2):
				cval = items[i]
				dist = int(items[i+1])
				pair = (cval, dist)
				values.append(pair)
			sampler = CategoricalRejectSampler(values)
		elif dtype == "scategorical":
			vfpath = items[0]
			values = getFileLines(vfpath, None)
			sampler = CategoricalSetSampler(values)
	elif stype == "discrete":
		vmin = int(items[0])
		vmax = int(items[1])
		step = int(items[2])
		values = list(map(lambda i : int(items[i]), range(3, len(items)-2)))
		sampler = DiscreteRejectSampler(vmin, vmax, step, values)
	elif stype == "bernauli":
		pr = float(items[0])
		events = None
		if len(items) == 5:
			events = list()
			if dtype == "int":
				events.append(int(items[1]))
				events.append(int(items[2]))
			elif dtype == "categorical":
				events.append(items[1])
				events.append(items[2])
		sampler = BernoulliTrialSampler(pr, events)
	else:
		raise ValueError("invalid sampler type " + stype)
	return sampler
				 
				
			
				
				
 | 
