Spaces:
Build error
Build error
Upload 10 files
Browse files- data/.DS_Store +0 -0
- data/10106922982.jpeg +0 -0
- data/10111325994.jpeg +0 -0
- data/10113394119.jpeg +0 -0
- data/10119695953.jpeg +0 -0
- data/thuya.jpeg +0 -0
- notebooks/.DS_Store +0 -0
- notebooks/CLIP (3).ipynb +836 -0
- notebooks/LLaVa (1).ipynb +0 -0
- notebooks/SAM (1).ipynb +0 -0
data/.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
data/10106922982.jpeg
ADDED
|
data/10111325994.jpeg
ADDED
|
data/10113394119.jpeg
ADDED
|
data/10119695953.jpeg
ADDED
|
data/thuya.jpeg
ADDED
|
notebooks/.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
notebooks/CLIP (3).ipynb
ADDED
|
@@ -0,0 +1,836 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 1,
|
| 6 |
+
"metadata": {
|
| 7 |
+
"colab": {
|
| 8 |
+
"base_uri": "https://localhost:8080/"
|
| 9 |
+
},
|
| 10 |
+
"id": "sYaX1Rf8pCWN",
|
| 11 |
+
"outputId": "f52aaf57-323d-46ff-908f-f188525b830a",
|
| 12 |
+
"tags": []
|
| 13 |
+
},
|
| 14 |
+
"outputs": [
|
| 15 |
+
{
|
| 16 |
+
"name": "stdout",
|
| 17 |
+
"output_type": "stream",
|
| 18 |
+
"text": [
|
| 19 |
+
"Collecting ftfy\n",
|
| 20 |
+
" Downloading ftfy-6.2.0-py3-none-any.whl (54 kB)\n",
|
| 21 |
+
"\u001b[K |ββββββββββββββββββββββββββββββββ| 54 kB 3.5 MB/s eta 0:00:011\n",
|
| 22 |
+
"\u001b[?25hCollecting regex\n",
|
| 23 |
+
" Downloading regex-2024.5.15-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (774 kB)\n",
|
| 24 |
+
"\u001b[K |ββββββββββββββββββββββββββββββββ| 774 kB 4.9 MB/s eta 0:00:01\n",
|
| 25 |
+
"\u001b[?25hRequirement already satisfied: tqdm in /home/user/miniconda/lib/python3.9/site-packages (4.61.2)\n",
|
| 26 |
+
"Requirement already satisfied: wcwidth<0.3.0,>=0.2.12 in /home/user/miniconda/lib/python3.9/site-packages (from ftfy) (0.2.13)\n",
|
| 27 |
+
"Installing collected packages: regex, ftfy\n",
|
| 28 |
+
"Successfully installed ftfy-6.2.0 regex-2024.5.15\n",
|
| 29 |
+
"Collecting git+https://github.com/openai/CLIP.git\n",
|
| 30 |
+
" Cloning https://github.com/openai/CLIP.git to /tmp/pip-req-build-7h9f8ksf\n",
|
| 31 |
+
" Running command git clone -q https://github.com/openai/CLIP.git /tmp/pip-req-build-7h9f8ksf\n",
|
| 32 |
+
"Requirement already satisfied: ftfy in /home/user/miniconda/lib/python3.9/site-packages (from clip==1.0) (6.2.0)\n",
|
| 33 |
+
"Requirement already satisfied: regex in /home/user/miniconda/lib/python3.9/site-packages (from clip==1.0) (2024.5.15)\n",
|
| 34 |
+
"Requirement already satisfied: tqdm in /home/user/miniconda/lib/python3.9/site-packages (from clip==1.0) (4.61.2)\n",
|
| 35 |
+
"Collecting torch\n",
|
| 36 |
+
" Downloading torch-2.3.0-cp39-cp39-manylinux1_x86_64.whl (779.1 MB)\n",
|
| 37 |
+
"\u001b[K |ββββββββββββββ | 322.4 MB 155.1 MB/s eta 0:00:03"
|
| 38 |
+
]
|
| 39 |
+
},
|
| 40 |
+
{
|
| 41 |
+
"name": "stderr",
|
| 42 |
+
"output_type": "stream",
|
| 43 |
+
"text": [
|
| 44 |
+
"IOPub data rate exceeded.\n",
|
| 45 |
+
"The Jupyter server will temporarily stop sending output\n",
|
| 46 |
+
"to the client in order to avoid crashing it.\n",
|
| 47 |
+
"To change this limit, set the config variable\n",
|
| 48 |
+
"`--ServerApp.iopub_data_rate_limit`.\n",
|
| 49 |
+
"\n",
|
| 50 |
+
"Current values:\n",
|
| 51 |
+
"ServerApp.iopub_data_rate_limit=1000000.0 (bytes/sec)\n",
|
| 52 |
+
"ServerApp.rate_limit_window=3.0 (secs)\n",
|
| 53 |
+
"\n"
|
| 54 |
+
]
|
| 55 |
+
},
|
| 56 |
+
{
|
| 57 |
+
"name": "stdout",
|
| 58 |
+
"output_type": "stream",
|
| 59 |
+
"text": [
|
| 60 |
+
"\u001b[K |ββββββββββββββββββββββββββββββ | 726.2 MB 140.6 MB/s eta 0:00:01"
|
| 61 |
+
]
|
| 62 |
+
},
|
| 63 |
+
{
|
| 64 |
+
"name": "stderr",
|
| 65 |
+
"output_type": "stream",
|
| 66 |
+
"text": [
|
| 67 |
+
"IOPub data rate exceeded.\n",
|
| 68 |
+
"The Jupyter server will temporarily stop sending output\n",
|
| 69 |
+
"to the client in order to avoid crashing it.\n",
|
| 70 |
+
"To change this limit, set the config variable\n",
|
| 71 |
+
"`--ServerApp.iopub_data_rate_limit`.\n",
|
| 72 |
+
"\n",
|
| 73 |
+
"Current values:\n",
|
| 74 |
+
"ServerApp.iopub_data_rate_limit=1000000.0 (bytes/sec)\n",
|
| 75 |
+
"ServerApp.rate_limit_window=3.0 (secs)\n",
|
| 76 |
+
"\n"
|
| 77 |
+
]
|
| 78 |
+
},
|
| 79 |
+
{
|
| 80 |
+
"name": "stdout",
|
| 81 |
+
"output_type": "stream",
|
| 82 |
+
"text": [
|
| 83 |
+
"\u001b[K |ββββββββββββββββββββββββββββββββ| 779.1 MB 39 kB/s \n",
|
| 84 |
+
"\u001b[?25hCollecting torchvision\n",
|
| 85 |
+
" Downloading torchvision-0.18.0-cp39-cp39-manylinux1_x86_64.whl (7.0 MB)\n",
|
| 86 |
+
"\u001b[K |ββββββββββββββββββββββββββββββββ| 7.0 MB 117.1 MB/s eta 0:00:01\n",
|
| 87 |
+
"\u001b[?25hRequirement already satisfied: wcwidth<0.3.0,>=0.2.12 in /home/user/miniconda/lib/python3.9/site-packages (from ftfy->clip==1.0) (0.2.13)\n",
|
| 88 |
+
"Collecting filelock\n",
|
| 89 |
+
" Downloading filelock-3.14.0-py3-none-any.whl (12 kB)\n",
|
| 90 |
+
"Requirement already satisfied: jinja2 in /home/user/miniconda/lib/python3.9/site-packages (from torch->clip==1.0) (3.1.4)\n",
|
| 91 |
+
"Collecting nvidia-cuda-nvrtc-cu12==12.1.105\n",
|
| 92 |
+
" Downloading nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (23.7 MB)\n",
|
| 93 |
+
"\u001b[K |ββββββββββββββββββββββββββββββββ| 23.7 MB 111.3 MB/s eta 0:00:01\n",
|
| 94 |
+
"\u001b[?25hCollecting nvidia-cudnn-cu12==8.9.2.26\n",
|
| 95 |
+
" Downloading nvidia_cudnn_cu12-8.9.2.26-py3-none-manylinux1_x86_64.whl (731.7 MB)\n",
|
| 96 |
+
"\u001b[K |βββββββββββββ | 281.1 MB 157.5 MB/s eta 0:00:03"
|
| 97 |
+
]
|
| 98 |
+
},
|
| 99 |
+
{
|
| 100 |
+
"name": "stderr",
|
| 101 |
+
"output_type": "stream",
|
| 102 |
+
"text": [
|
| 103 |
+
"IOPub data rate exceeded.\n",
|
| 104 |
+
"The Jupyter server will temporarily stop sending output\n",
|
| 105 |
+
"to the client in order to avoid crashing it.\n",
|
| 106 |
+
"To change this limit, set the config variable\n",
|
| 107 |
+
"`--ServerApp.iopub_data_rate_limit`.\n",
|
| 108 |
+
"\n",
|
| 109 |
+
"Current values:\n",
|
| 110 |
+
"ServerApp.iopub_data_rate_limit=1000000.0 (bytes/sec)\n",
|
| 111 |
+
"ServerApp.rate_limit_window=3.0 (secs)\n",
|
| 112 |
+
"\n"
|
| 113 |
+
]
|
| 114 |
+
},
|
| 115 |
+
{
|
| 116 |
+
"name": "stdout",
|
| 117 |
+
"output_type": "stream",
|
| 118 |
+
"text": [
|
| 119 |
+
"\u001b[K |ββββββββββββββββββββββββββββββ | 687.7 MB 121.2 MB/s eta 0:00:01"
|
| 120 |
+
]
|
| 121 |
+
},
|
| 122 |
+
{
|
| 123 |
+
"name": "stderr",
|
| 124 |
+
"output_type": "stream",
|
| 125 |
+
"text": [
|
| 126 |
+
"IOPub data rate exceeded.\n",
|
| 127 |
+
"The Jupyter server will temporarily stop sending output\n",
|
| 128 |
+
"to the client in order to avoid crashing it.\n",
|
| 129 |
+
"To change this limit, set the config variable\n",
|
| 130 |
+
"`--ServerApp.iopub_data_rate_limit`.\n",
|
| 131 |
+
"\n",
|
| 132 |
+
"Current values:\n",
|
| 133 |
+
"ServerApp.iopub_data_rate_limit=1000000.0 (bytes/sec)\n",
|
| 134 |
+
"ServerApp.rate_limit_window=3.0 (secs)\n",
|
| 135 |
+
"\n"
|
| 136 |
+
]
|
| 137 |
+
},
|
| 138 |
+
{
|
| 139 |
+
"name": "stdout",
|
| 140 |
+
"output_type": "stream",
|
| 141 |
+
"text": [
|
| 142 |
+
"\u001b[K |ββββββββββββββββββββββββββββββββ| 731.7 MB 27 kB/s \n",
|
| 143 |
+
"\u001b[?25hCollecting triton==2.3.0\n",
|
| 144 |
+
" Downloading triton-2.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (168.1 MB)\n",
|
| 145 |
+
"\u001b[K |ββββββββββββββββββββββββββββββββ| 168.1 MB 163.1 MB/s eta 0:00:01\n",
|
| 146 |
+
"\u001b[?25hCollecting nvidia-nccl-cu12==2.20.5\n",
|
| 147 |
+
" Downloading nvidia_nccl_cu12-2.20.5-py3-none-manylinux2014_x86_64.whl (176.2 MB)\n",
|
| 148 |
+
"\u001b[K |ββββββββββββββββββββββββββββββββ| 176.2 MB 157 kB/s s eta 0:00:01\n",
|
| 149 |
+
"\u001b[?25hCollecting nvidia-cublas-cu12==12.1.3.1\n",
|
| 150 |
+
" Downloading nvidia_cublas_cu12-12.1.3.1-py3-none-manylinux1_x86_64.whl (410.6 MB)\n",
|
| 151 |
+
"\u001b[K |βββββββββββββββββββββββ | 291.1 MB 155.6 MB/s eta 0:00:01"
|
| 152 |
+
]
|
| 153 |
+
},
|
| 154 |
+
{
|
| 155 |
+
"name": "stderr",
|
| 156 |
+
"output_type": "stream",
|
| 157 |
+
"text": [
|
| 158 |
+
"IOPub data rate exceeded.\n",
|
| 159 |
+
"The Jupyter server will temporarily stop sending output\n",
|
| 160 |
+
"to the client in order to avoid crashing it.\n",
|
| 161 |
+
"To change this limit, set the config variable\n",
|
| 162 |
+
"`--ServerApp.iopub_data_rate_limit`.\n",
|
| 163 |
+
"\n",
|
| 164 |
+
"Current values:\n",
|
| 165 |
+
"ServerApp.iopub_data_rate_limit=1000000.0 (bytes/sec)\n",
|
| 166 |
+
"ServerApp.rate_limit_window=3.0 (secs)\n",
|
| 167 |
+
"\n"
|
| 168 |
+
]
|
| 169 |
+
},
|
| 170 |
+
{
|
| 171 |
+
"name": "stdout",
|
| 172 |
+
"output_type": "stream",
|
| 173 |
+
"text": [
|
| 174 |
+
"\u001b[K |ββββββββββββββββββββββββββββββββ| 410.6 MB 11 kB/s /s eta 0:00:01\n",
|
| 175 |
+
"\u001b[?25hCollecting nvidia-curand-cu12==10.3.2.106\n",
|
| 176 |
+
" Downloading nvidia_curand_cu12-10.3.2.106-py3-none-manylinux1_x86_64.whl (56.5 MB)\n",
|
| 177 |
+
"\u001b[K |ββββββββββββββββββββββββββββββββ| 56.5 MB 125.6 MB/s eta 0:00:01ββββββββββββββββββββ | 35.0 MB 125.6 MB/s eta 0:00:01\n",
|
| 178 |
+
"\u001b[?25hRequirement already satisfied: typing-extensions>=4.8.0 in /home/user/miniconda/lib/python3.9/site-packages (from torch->clip==1.0) (4.11.0)\n",
|
| 179 |
+
"Collecting nvidia-cusolver-cu12==11.4.5.107\n",
|
| 180 |
+
" Downloading nvidia_cusolver_cu12-11.4.5.107-py3-none-manylinux1_x86_64.whl (124.2 MB)\n",
|
| 181 |
+
"\u001b[K |ββββββββββββββββββββββββββββββββ| 124.2 MB 144.5 MB/s eta 0:00:01\n",
|
| 182 |
+
"\u001b[?25hCollecting sympy\n",
|
| 183 |
+
" Downloading sympy-1.12-py3-none-any.whl (5.7 MB)\n",
|
| 184 |
+
"\u001b[K |ββββββββββββββββββββββββββββββββ| 5.7 MB 109.2 MB/s eta 0:00:01\n",
|
| 185 |
+
"\u001b[?25hCollecting fsspec\n",
|
| 186 |
+
" Downloading fsspec-2024.5.0-py3-none-any.whl (316 kB)\n",
|
| 187 |
+
"\u001b[K |ββββββββββββββββββββββββββββββββ| 316 kB 119.1 MB/s eta 0:00:01\n",
|
| 188 |
+
"\u001b[?25hCollecting nvidia-cuda-runtime-cu12==12.1.105\n",
|
| 189 |
+
" Downloading nvidia_cuda_runtime_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (823 kB)\n",
|
| 190 |
+
"\u001b[K |ββββββββββββββββββββββββββββββββ| 823 kB 119.5 MB/s eta 0:00:01\n",
|
| 191 |
+
"\u001b[?25hCollecting nvidia-cuda-cupti-cu12==12.1.105\n",
|
| 192 |
+
" Downloading nvidia_cuda_cupti_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (14.1 MB)\n",
|
| 193 |
+
"\u001b[K |ββββββββββββββββββββββββββββββββ| 14.1 MB 126.1 MB/s eta 0:00:01\n",
|
| 194 |
+
"\u001b[?25hCollecting nvidia-cufft-cu12==11.0.2.54\n",
|
| 195 |
+
" Downloading nvidia_cufft_cu12-11.0.2.54-py3-none-manylinux1_x86_64.whl (121.6 MB)\n",
|
| 196 |
+
"\u001b[K |ββββββββββββββββββββββββββββββββ| 121.6 MB 4.8 MB/s eta 0:00:011\n",
|
| 197 |
+
"\u001b[?25hCollecting networkx\n",
|
| 198 |
+
" Downloading networkx-3.2.1-py3-none-any.whl (1.6 MB)\n",
|
| 199 |
+
"\u001b[K |ββββββββββββββββββββββββββββββββ| 1.6 MB 112.8 MB/s eta 0:00:01\n",
|
| 200 |
+
"\u001b[?25hCollecting nvidia-cusparse-cu12==12.1.0.106\n",
|
| 201 |
+
" Downloading nvidia_cusparse_cu12-12.1.0.106-py3-none-manylinux1_x86_64.whl (196.0 MB)\n",
|
| 202 |
+
"\u001b[K |ββββββββββββββββββββββββββββββββ| 196.0 MB 154.4 MB/s eta 0:00:01\n",
|
| 203 |
+
"\u001b[?25hCollecting nvidia-nvtx-cu12==12.1.105\n",
|
| 204 |
+
" Downloading nvidia_nvtx_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (99 kB)\n",
|
| 205 |
+
"\u001b[K |ββββββββββββββββββββββββββββββββ| 99 kB 39.0 MB/s eta 0:00:01\n",
|
| 206 |
+
"\u001b[?25hCollecting nvidia-nvjitlink-cu12\n",
|
| 207 |
+
" Downloading nvidia_nvjitlink_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl (21.1 MB)\n",
|
| 208 |
+
"\u001b[K |ββββββββββββββββββββββββββββββββ| 21.1 MB 123.7 MB/s eta 0:00:01\n",
|
| 209 |
+
"\u001b[?25hRequirement already satisfied: MarkupSafe>=2.0 in /home/user/miniconda/lib/python3.9/site-packages (from jinja2->torch->clip==1.0) (2.1.5)\n",
|
| 210 |
+
"Collecting mpmath>=0.19\n",
|
| 211 |
+
" Downloading mpmath-1.3.0-py3-none-any.whl (536 kB)\n",
|
| 212 |
+
"\u001b[K |ββββββββββββββββββββββββββββββββ| 536 kB 125.5 MB/s eta 0:00:01\n",
|
| 213 |
+
"\u001b[?25hCollecting pillow!=8.3.*,>=5.3.0\n",
|
| 214 |
+
" Downloading pillow-10.3.0-cp39-cp39-manylinux_2_28_x86_64.whl (4.5 MB)\n",
|
| 215 |
+
"\u001b[K |ββββββββββββββββββββββββββββββββ| 4.5 MB 123.5 MB/s eta 0:00:01\n",
|
| 216 |
+
"\u001b[?25hCollecting numpy\n",
|
| 217 |
+
" Downloading numpy-1.26.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.2 MB)\n",
|
| 218 |
+
"\u001b[K |ββββββββββββββββββββββββββββββββ| 18.2 MB 113.2 MB/s eta 0:00:01 | 1.1 MB 113.2 MB/s eta 0:00:01\n",
|
| 219 |
+
"\u001b[?25hBuilding wheels for collected packages: clip\n",
|
| 220 |
+
" Building wheel for clip (setup.py) ... \u001b[?25ldone\n",
|
| 221 |
+
"\u001b[?25h Created wheel for clip: filename=clip-1.0-py3-none-any.whl size=1369525 sha256=2d16eeced15e3729c52334f9be57fd2ddca900110e745c1af86ab5aade88cd62\n",
|
| 222 |
+
" Stored in directory: /tmp/pip-ephem-wheel-cache-8vr04co8/wheels/c8/e4/e1/11374c111387672fc2068dfbe0d4b424cb9cdd1b2e184a71b5\n",
|
| 223 |
+
"Successfully built clip\n",
|
| 224 |
+
"Installing collected packages: nvidia-nvjitlink-cu12, nvidia-cusparse-cu12, nvidia-cublas-cu12, mpmath, filelock, triton, sympy, nvidia-nvtx-cu12, nvidia-nccl-cu12, nvidia-cusolver-cu12, nvidia-curand-cu12, nvidia-cufft-cu12, nvidia-cudnn-cu12, nvidia-cuda-runtime-cu12, nvidia-cuda-nvrtc-cu12, nvidia-cuda-cupti-cu12, networkx, fsspec, torch, pillow, numpy, torchvision, clip\n",
|
| 225 |
+
"Successfully installed clip-1.0 filelock-3.14.0 fsspec-2024.5.0 mpmath-1.3.0 networkx-3.2.1 numpy-1.26.4 nvidia-cublas-cu12-12.1.3.1 nvidia-cuda-cupti-cu12-12.1.105 nvidia-cuda-nvrtc-cu12-12.1.105 nvidia-cuda-runtime-cu12-12.1.105 nvidia-cudnn-cu12-8.9.2.26 nvidia-cufft-cu12-11.0.2.54 nvidia-curand-cu12-10.3.2.106 nvidia-cusolver-cu12-11.4.5.107 nvidia-cusparse-cu12-12.1.0.106 nvidia-nccl-cu12-2.20.5 nvidia-nvjitlink-cu12-12.4.127 nvidia-nvtx-cu12-12.1.105 pillow-10.3.0 sympy-1.12 torch-2.3.0 torchvision-0.18.0 triton-2.3.0\n",
|
| 226 |
+
"\u001b[33mWARNING: Requirement 'sentencepiece-0.1.98-cp311-cp311-win_amd64.whl' looks like a filename, but the file does not exist\u001b[0m\n",
|
| 227 |
+
"\u001b[31mERROR: sentencepiece-0.1.98-cp311-cp311-win_amd64.whl is not a supported wheel on this platform.\u001b[0m\n"
|
| 228 |
+
]
|
| 229 |
+
}
|
| 230 |
+
],
|
| 231 |
+
"source": [
|
| 232 |
+
"!pip install ftfy regex tqdm\n",
|
| 233 |
+
"!pip install git+https://github.com/openai/CLIP.git\n",
|
| 234 |
+
"!pip install sentencepiece-0.1.98-cp311-cp311-win_amd64.whl\n",
|
| 235 |
+
"\n"
|
| 236 |
+
]
|
| 237 |
+
},
|
| 238 |
+
{
|
| 239 |
+
"cell_type": "code",
|
| 240 |
+
"execution_count": 5,
|
| 241 |
+
"metadata": {
|
| 242 |
+
"colab": {
|
| 243 |
+
"base_uri": "https://localhost:8080/"
|
| 244 |
+
},
|
| 245 |
+
"id": "Zuat0Supqs7r",
|
| 246 |
+
"outputId": "f3ec0a32-0d58-4241-d3f2-621828297c43",
|
| 247 |
+
"tags": []
|
| 248 |
+
},
|
| 249 |
+
"outputs": [
|
| 250 |
+
{
|
| 251 |
+
"name": "stdout",
|
| 252 |
+
"output_type": "stream",
|
| 253 |
+
"text": [
|
| 254 |
+
"Collecting transformers\n",
|
| 255 |
+
" Downloading transformers-4.41.0-py3-none-any.whl (9.1 MB)\n",
|
| 256 |
+
"\u001b[K |ββββββββββββββββββββββββββββββββ| 9.1 MB 4.3 MB/s eta 0:00:01\n",
|
| 257 |
+
"\u001b[?25hRequirement already satisfied: tqdm>=4.27 in /home/user/miniconda/lib/python3.9/site-packages (from transformers) (4.61.2)\n",
|
| 258 |
+
"Collecting tokenizers<0.20,>=0.19\n",
|
| 259 |
+
" Downloading tokenizers-0.19.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.6 MB)\n",
|
| 260 |
+
"\u001b[K |ββββββββββββββββββββββββββββββββ| 3.6 MB 104.9 MB/s eta 0:00:01\n",
|
| 261 |
+
"\u001b[?25hRequirement already satisfied: pyyaml>=5.1 in /home/user/miniconda/lib/python3.9/site-packages (from transformers) (6.0.1)\n",
|
| 262 |
+
"Requirement already satisfied: filelock in /home/user/miniconda/lib/python3.9/site-packages (from transformers) (3.14.0)\n",
|
| 263 |
+
"Requirement already satisfied: numpy>=1.17 in /home/user/miniconda/lib/python3.9/site-packages (from transformers) (1.26.4)\n",
|
| 264 |
+
"Collecting huggingface-hub<1.0,>=0.23.0\n",
|
| 265 |
+
" Downloading huggingface_hub-0.23.0-py3-none-any.whl (401 kB)\n",
|
| 266 |
+
"\u001b[K |ββββββββββββββββββββββββββββββββ| 401 kB 120.0 MB/s eta 0:00:01\n",
|
| 267 |
+
"\u001b[?25hRequirement already satisfied: packaging>=20.0 in /home/user/miniconda/lib/python3.9/site-packages (from transformers) (24.0)\n",
|
| 268 |
+
"Requirement already satisfied: regex!=2019.12.17 in /home/user/miniconda/lib/python3.9/site-packages (from transformers) (2024.5.15)\n",
|
| 269 |
+
"Requirement already satisfied: requests in /home/user/miniconda/lib/python3.9/site-packages (from transformers) (2.31.0)\n",
|
| 270 |
+
"Collecting safetensors>=0.4.1\n",
|
| 271 |
+
" Downloading safetensors-0.4.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB)\n",
|
| 272 |
+
"\u001b[K |ββββββββββββββββββββββββββββββββ| 1.2 MB 95.0 MB/s eta 0:00:01\n",
|
| 273 |
+
"\u001b[?25hRequirement already satisfied: typing-extensions>=3.7.4.3 in /home/user/miniconda/lib/python3.9/site-packages (from huggingface-hub<1.0,>=0.23.0->transformers) (4.11.0)\n",
|
| 274 |
+
"Requirement already satisfied: fsspec>=2023.5.0 in /home/user/miniconda/lib/python3.9/site-packages (from huggingface-hub<1.0,>=0.23.0->transformers) (2024.5.0)\n",
|
| 275 |
+
"Requirement already satisfied: certifi>=2017.4.17 in /home/user/miniconda/lib/python3.9/site-packages (from requests->transformers) (2021.5.30)\n",
|
| 276 |
+
"Requirement already satisfied: charset-normalizer<4,>=2 in /home/user/miniconda/lib/python3.9/site-packages (from requests->transformers) (3.3.2)\n",
|
| 277 |
+
"Requirement already satisfied: idna<4,>=2.5 in /home/user/miniconda/lib/python3.9/site-packages (from requests->transformers) (2.10)\n",
|
| 278 |
+
"Requirement already satisfied: urllib3<3,>=1.21.1 in /home/user/miniconda/lib/python3.9/site-packages (from requests->transformers) (1.26.6)\n",
|
| 279 |
+
"Installing collected packages: huggingface-hub, tokenizers, safetensors, transformers\n",
|
| 280 |
+
"Successfully installed huggingface-hub-0.23.0 safetensors-0.4.3 tokenizers-0.19.1 transformers-4.41.0\n"
|
| 281 |
+
]
|
| 282 |
+
}
|
| 283 |
+
],
|
| 284 |
+
"source": [
|
| 285 |
+
"# prompt: install transformers\n",
|
| 286 |
+
"\n",
|
| 287 |
+
"!pip install transformers\n"
|
| 288 |
+
]
|
| 289 |
+
},
|
| 290 |
+
{
|
| 291 |
+
"cell_type": "code",
|
| 292 |
+
"execution_count": 6,
|
| 293 |
+
"metadata": {
|
| 294 |
+
"id": "8xOP6veIq5LM",
|
| 295 |
+
"tags": []
|
| 296 |
+
},
|
| 297 |
+
"outputs": [
|
| 298 |
+
{
|
| 299 |
+
"data": {
|
| 300 |
+
"application/json": {
|
| 301 |
+
"ascii": false,
|
| 302 |
+
"bar_format": null,
|
| 303 |
+
"colour": null,
|
| 304 |
+
"elapsed": 0.0066907405853271484,
|
| 305 |
+
"initial": 0,
|
| 306 |
+
"n": 0,
|
| 307 |
+
"ncols": null,
|
| 308 |
+
"nrows": null,
|
| 309 |
+
"postfix": null,
|
| 310 |
+
"prefix": "preprocessor_config.json",
|
| 311 |
+
"rate": null,
|
| 312 |
+
"total": 228,
|
| 313 |
+
"unit": "B",
|
| 314 |
+
"unit_divisor": 1000,
|
| 315 |
+
"unit_scale": true
|
| 316 |
+
},
|
| 317 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 318 |
+
"model_id": "d43500a3f8b1440baaaf1337fd547030",
|
| 319 |
+
"version_major": 2,
|
| 320 |
+
"version_minor": 0
|
| 321 |
+
},
|
| 322 |
+
"text/plain": [
|
| 323 |
+
"preprocessor_config.json: 0%| | 0.00/228 [00:00<?, ?B/s]"
|
| 324 |
+
]
|
| 325 |
+
},
|
| 326 |
+
"metadata": {},
|
| 327 |
+
"output_type": "display_data"
|
| 328 |
+
},
|
| 329 |
+
{
|
| 330 |
+
"name": "stderr",
|
| 331 |
+
"output_type": "stream",
|
| 332 |
+
"text": [
|
| 333 |
+
"/home/user/miniconda/lib/python3.9/site-packages/transformers/models/vit/feature_extraction_vit.py:28: FutureWarning: The class ViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please use ViTImageProcessor instead.\n",
|
| 334 |
+
" warnings.warn(\n"
|
| 335 |
+
]
|
| 336 |
+
},
|
| 337 |
+
{
|
| 338 |
+
"data": {
|
| 339 |
+
"application/json": {
|
| 340 |
+
"ascii": false,
|
| 341 |
+
"bar_format": null,
|
| 342 |
+
"colour": null,
|
| 343 |
+
"elapsed": 0.004696846008300781,
|
| 344 |
+
"initial": 0,
|
| 345 |
+
"n": 0,
|
| 346 |
+
"ncols": null,
|
| 347 |
+
"nrows": null,
|
| 348 |
+
"postfix": null,
|
| 349 |
+
"prefix": "tokenizer_config.json",
|
| 350 |
+
"rate": null,
|
| 351 |
+
"total": 241,
|
| 352 |
+
"unit": "B",
|
| 353 |
+
"unit_divisor": 1000,
|
| 354 |
+
"unit_scale": true
|
| 355 |
+
},
|
| 356 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 357 |
+
"model_id": "bf4f06b628644ec8a638e5f32bd00324",
|
| 358 |
+
"version_major": 2,
|
| 359 |
+
"version_minor": 0
|
| 360 |
+
},
|
| 361 |
+
"text/plain": [
|
| 362 |
+
"tokenizer_config.json: 0%| | 0.00/241 [00:00<?, ?B/s]"
|
| 363 |
+
]
|
| 364 |
+
},
|
| 365 |
+
"metadata": {},
|
| 366 |
+
"output_type": "display_data"
|
| 367 |
+
},
|
| 368 |
+
{
|
| 369 |
+
"data": {
|
| 370 |
+
"application/json": {
|
| 371 |
+
"ascii": false,
|
| 372 |
+
"bar_format": null,
|
| 373 |
+
"colour": null,
|
| 374 |
+
"elapsed": 0.004175662994384766,
|
| 375 |
+
"initial": 0,
|
| 376 |
+
"n": 0,
|
| 377 |
+
"ncols": null,
|
| 378 |
+
"nrows": null,
|
| 379 |
+
"postfix": null,
|
| 380 |
+
"prefix": "vocab.json",
|
| 381 |
+
"rate": null,
|
| 382 |
+
"total": 798156,
|
| 383 |
+
"unit": "B",
|
| 384 |
+
"unit_divisor": 1000,
|
| 385 |
+
"unit_scale": true
|
| 386 |
+
},
|
| 387 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 388 |
+
"model_id": "ffc926da2aa540f2a1760c3bb4fb4909",
|
| 389 |
+
"version_major": 2,
|
| 390 |
+
"version_minor": 0
|
| 391 |
+
},
|
| 392 |
+
"text/plain": [
|
| 393 |
+
"vocab.json: 0%| | 0.00/798k [00:00<?, ?B/s]"
|
| 394 |
+
]
|
| 395 |
+
},
|
| 396 |
+
"metadata": {},
|
| 397 |
+
"output_type": "display_data"
|
| 398 |
+
},
|
| 399 |
+
{
|
| 400 |
+
"data": {
|
| 401 |
+
"application/json": {
|
| 402 |
+
"ascii": false,
|
| 403 |
+
"bar_format": null,
|
| 404 |
+
"colour": null,
|
| 405 |
+
"elapsed": 0.004157304763793945,
|
| 406 |
+
"initial": 0,
|
| 407 |
+
"n": 0,
|
| 408 |
+
"ncols": null,
|
| 409 |
+
"nrows": null,
|
| 410 |
+
"postfix": null,
|
| 411 |
+
"prefix": "merges.txt",
|
| 412 |
+
"rate": null,
|
| 413 |
+
"total": 456356,
|
| 414 |
+
"unit": "B",
|
| 415 |
+
"unit_divisor": 1000,
|
| 416 |
+
"unit_scale": true
|
| 417 |
+
},
|
| 418 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 419 |
+
"model_id": "302ae34c419d484a9b16e025d6d2690b",
|
| 420 |
+
"version_major": 2,
|
| 421 |
+
"version_minor": 0
|
| 422 |
+
},
|
| 423 |
+
"text/plain": [
|
| 424 |
+
"merges.txt: 0%| | 0.00/456k [00:00<?, ?B/s]"
|
| 425 |
+
]
|
| 426 |
+
},
|
| 427 |
+
"metadata": {},
|
| 428 |
+
"output_type": "display_data"
|
| 429 |
+
},
|
| 430 |
+
{
|
| 431 |
+
"data": {
|
| 432 |
+
"application/json": {
|
| 433 |
+
"ascii": false,
|
| 434 |
+
"bar_format": null,
|
| 435 |
+
"colour": null,
|
| 436 |
+
"elapsed": 0.004187107086181641,
|
| 437 |
+
"initial": 0,
|
| 438 |
+
"n": 0,
|
| 439 |
+
"ncols": null,
|
| 440 |
+
"nrows": null,
|
| 441 |
+
"postfix": null,
|
| 442 |
+
"prefix": "tokenizer.json",
|
| 443 |
+
"rate": null,
|
| 444 |
+
"total": 1355446,
|
| 445 |
+
"unit": "B",
|
| 446 |
+
"unit_divisor": 1000,
|
| 447 |
+
"unit_scale": true
|
| 448 |
+
},
|
| 449 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 450 |
+
"model_id": "de2f6cacd09a43c98c06cf4e4243c7c7",
|
| 451 |
+
"version_major": 2,
|
| 452 |
+
"version_minor": 0
|
| 453 |
+
},
|
| 454 |
+
"text/plain": [
|
| 455 |
+
"tokenizer.json: 0%| | 0.00/1.36M [00:00<?, ?B/s]"
|
| 456 |
+
]
|
| 457 |
+
},
|
| 458 |
+
"metadata": {},
|
| 459 |
+
"output_type": "display_data"
|
| 460 |
+
},
|
| 461 |
+
{
|
| 462 |
+
"data": {
|
| 463 |
+
"application/json": {
|
| 464 |
+
"ascii": false,
|
| 465 |
+
"bar_format": null,
|
| 466 |
+
"colour": null,
|
| 467 |
+
"elapsed": 0.004050254821777344,
|
| 468 |
+
"initial": 0,
|
| 469 |
+
"n": 0,
|
| 470 |
+
"ncols": null,
|
| 471 |
+
"nrows": null,
|
| 472 |
+
"postfix": null,
|
| 473 |
+
"prefix": "special_tokens_map.json",
|
| 474 |
+
"rate": null,
|
| 475 |
+
"total": 120,
|
| 476 |
+
"unit": "B",
|
| 477 |
+
"unit_divisor": 1000,
|
| 478 |
+
"unit_scale": true
|
| 479 |
+
},
|
| 480 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 481 |
+
"model_id": "c4921bf4d08d4156a1904fabe261235c",
|
| 482 |
+
"version_major": 2,
|
| 483 |
+
"version_minor": 0
|
| 484 |
+
},
|
| 485 |
+
"text/plain": [
|
| 486 |
+
"special_tokens_map.json: 0%| | 0.00/120 [00:00<?, ?B/s]"
|
| 487 |
+
]
|
| 488 |
+
},
|
| 489 |
+
"metadata": {},
|
| 490 |
+
"output_type": "display_data"
|
| 491 |
+
},
|
| 492 |
+
{
|
| 493 |
+
"data": {
|
| 494 |
+
"application/json": {
|
| 495 |
+
"ascii": false,
|
| 496 |
+
"bar_format": null,
|
| 497 |
+
"colour": null,
|
| 498 |
+
"elapsed": 0.004579067230224609,
|
| 499 |
+
"initial": 0,
|
| 500 |
+
"n": 0,
|
| 501 |
+
"ncols": null,
|
| 502 |
+
"nrows": null,
|
| 503 |
+
"postfix": null,
|
| 504 |
+
"prefix": "config.json",
|
| 505 |
+
"rate": null,
|
| 506 |
+
"total": 4609,
|
| 507 |
+
"unit": "B",
|
| 508 |
+
"unit_divisor": 1000,
|
| 509 |
+
"unit_scale": true
|
| 510 |
+
},
|
| 511 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 512 |
+
"model_id": "2c6081497e1542ab9f86e1f763a46101",
|
| 513 |
+
"version_major": 2,
|
| 514 |
+
"version_minor": 0
|
| 515 |
+
},
|
| 516 |
+
"text/plain": [
|
| 517 |
+
"config.json: 0%| | 0.00/4.61k [00:00<?, ?B/s]"
|
| 518 |
+
]
|
| 519 |
+
},
|
| 520 |
+
"metadata": {},
|
| 521 |
+
"output_type": "display_data"
|
| 522 |
+
},
|
| 523 |
+
{
|
| 524 |
+
"data": {
|
| 525 |
+
"application/json": {
|
| 526 |
+
"ascii": false,
|
| 527 |
+
"bar_format": null,
|
| 528 |
+
"colour": null,
|
| 529 |
+
"elapsed": 0.0045909881591796875,
|
| 530 |
+
"initial": 0,
|
| 531 |
+
"n": 0,
|
| 532 |
+
"ncols": null,
|
| 533 |
+
"nrows": null,
|
| 534 |
+
"postfix": null,
|
| 535 |
+
"prefix": "pytorch_model.bin",
|
| 536 |
+
"rate": null,
|
| 537 |
+
"total": 982141993,
|
| 538 |
+
"unit": "B",
|
| 539 |
+
"unit_divisor": 1000,
|
| 540 |
+
"unit_scale": true
|
| 541 |
+
},
|
| 542 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 543 |
+
"model_id": "eafcdd2e978a42659bef0a50f82a7055",
|
| 544 |
+
"version_major": 2,
|
| 545 |
+
"version_minor": 0
|
| 546 |
+
},
|
| 547 |
+
"text/plain": [
|
| 548 |
+
"pytorch_model.bin: 0%| | 0.00/982M [00:00<?, ?B/s]"
|
| 549 |
+
]
|
| 550 |
+
},
|
| 551 |
+
"metadata": {},
|
| 552 |
+
"output_type": "display_data"
|
| 553 |
+
}
|
| 554 |
+
],
|
| 555 |
+
"source": [
|
| 556 |
+
"from transformers import VisionEncoderDecoderModel, ViTFeatureExtractor, AutoTokenizer\n",
|
| 557 |
+
"\n",
|
| 558 |
+
"\n",
|
| 559 |
+
"feature_extractor = ViTFeatureExtractor.from_pretrained(\"nlpconnect/vit-gpt2-image-captioning\")\n",
|
| 560 |
+
"tokenizer = AutoTokenizer.from_pretrained(\"nlpconnect/vit-gpt2-image-captioning\")\n",
|
| 561 |
+
"model = VisionEncoderDecoderModel.from_pretrained(\"nlpconnect/vit-gpt2-image-captioning\")"
|
| 562 |
+
]
|
| 563 |
+
},
|
| 564 |
+
{
|
| 565 |
+
"cell_type": "markdown",
|
| 566 |
+
"metadata": {
|
| 567 |
+
"id": "uYLlkIWgqGwX"
|
| 568 |
+
},
|
| 569 |
+
"source": [
|
| 570 |
+
"## Import the necessary libraries and load the CLIP model:"
|
| 571 |
+
]
|
| 572 |
+
},
|
| 573 |
+
{
|
| 574 |
+
"cell_type": "code",
|
| 575 |
+
"execution_count": 7,
|
| 576 |
+
"metadata": {
|
| 577 |
+
"id": "dLxPnrUQqDZU",
|
| 578 |
+
"tags": []
|
| 579 |
+
},
|
| 580 |
+
"outputs": [
|
| 581 |
+
{
|
| 582 |
+
"name": "stderr",
|
| 583 |
+
"output_type": "stream",
|
| 584 |
+
"text": [
|
| 585 |
+
"100%|βββββββββββββββββββββββββββββββββββββββ| 338M/338M [00:12<00:00, 28.0MiB/s]\n"
|
| 586 |
+
]
|
| 587 |
+
}
|
| 588 |
+
],
|
| 589 |
+
"source": [
|
| 590 |
+
"from PIL import Image\n",
|
| 591 |
+
"import clip\n",
|
| 592 |
+
"import torch\n",
|
| 593 |
+
"\n",
|
| 594 |
+
"device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n",
|
| 595 |
+
"clip_model, preprocess = clip.load(\"ViT-B/32\", device=device)"
|
| 596 |
+
]
|
| 597 |
+
},
|
| 598 |
+
{
|
| 599 |
+
"cell_type": "markdown",
|
| 600 |
+
"metadata": {
|
| 601 |
+
"id": "Gt1Q-d1iqM9F"
|
| 602 |
+
},
|
| 603 |
+
"source": [
|
| 604 |
+
"## Define a function to generate product descriptions:"
|
| 605 |
+
]
|
| 606 |
+
},
|
| 607 |
+
{
|
| 608 |
+
"cell_type": "code",
|
| 609 |
+
"execution_count": 8,
|
| 610 |
+
"metadata": {
|
| 611 |
+
"id": "u2XdvaffqGMr",
|
| 612 |
+
"tags": []
|
| 613 |
+
},
|
| 614 |
+
"outputs": [
|
| 615 |
+
{
|
| 616 |
+
"name": "stderr",
|
| 617 |
+
"output_type": "stream",
|
| 618 |
+
"text": [
|
| 619 |
+
"We strongly recommend passing in an `attention_mask` since your input_ids may be padded. See https://huggingface.co/docs/transformers/troubleshooting#incorrect-output-when-padding-tokens-arent-masked.\n",
|
| 620 |
+
"You may ignore this warning if your `pad_token_id` (50256) is identical to the `bos_token_id` (50256), `eos_token_id` (50256), or the `sep_token_id` (None), and your input is not padded.\n"
|
| 621 |
+
]
|
| 622 |
+
}
|
| 623 |
+
],
|
| 624 |
+
"source": [
|
| 625 |
+
"image = Image.open(\"data/download.jpeg\")\n",
|
| 626 |
+
"pixel_values = feature_extractor(images=image, return_tensors=\"pt\").pixel_values\n",
|
| 627 |
+
"output_ids = model.generate(pixel_values, max_length=50, num_beams=4, early_stopping=True)\n",
|
| 628 |
+
"captions = tokenizer.batch_decode(output_ids, skip_special_tokens=True)"
|
| 629 |
+
]
|
| 630 |
+
},
|
| 631 |
+
{
|
| 632 |
+
"cell_type": "code",
|
| 633 |
+
"execution_count": 9,
|
| 634 |
+
"metadata": {
|
| 635 |
+
"colab": {
|
| 636 |
+
"base_uri": "https://localhost:8080/"
|
| 637 |
+
},
|
| 638 |
+
"id": "lOf9lcUAqVlm",
|
| 639 |
+
"outputId": "d00cdc05-6652-4fba-b40c-03ad803d54e3",
|
| 640 |
+
"tags": []
|
| 641 |
+
},
|
| 642 |
+
"outputs": [
|
| 643 |
+
{
|
| 644 |
+
"name": "stdout",
|
| 645 |
+
"output_type": "stream",
|
| 646 |
+
"text": [
|
| 647 |
+
"a vase sitting on top of a table \n"
|
| 648 |
+
]
|
| 649 |
+
}
|
| 650 |
+
],
|
| 651 |
+
"source": [
|
| 652 |
+
"image = preprocess(image).unsqueeze(0).to(device)\n",
|
| 653 |
+
"with torch.no_grad():\n",
|
| 654 |
+
" image_features = clip_model.encode_image(image)\n",
|
| 655 |
+
"\n",
|
| 656 |
+
"text_inputs = torch.cat([clip.tokenize(caption).to(device) for caption in captions]).to(device)\n",
|
| 657 |
+
"with torch.no_grad():\n",
|
| 658 |
+
" text_features = clip_model.encode_text(text_inputs)\n",
|
| 659 |
+
"\n",
|
| 660 |
+
"similarity_scores = image_features @ text_features.T\n",
|
| 661 |
+
"best_caption_idx = similarity_scores.argmax().item()\n",
|
| 662 |
+
"product_description = captions[best_caption_idx]\n",
|
| 663 |
+
"print(product_description)"
|
| 664 |
+
]
|
| 665 |
+
},
|
| 666 |
+
{
|
| 667 |
+
"cell_type": "markdown",
|
| 668 |
+
"metadata": {
|
| 669 |
+
"id": "RM6RXXvT4xSN"
|
| 670 |
+
},
|
| 671 |
+
"source": [
|
| 672 |
+
"# Using SigLip"
|
| 673 |
+
]
|
| 674 |
+
},
|
| 675 |
+
{
|
| 676 |
+
"cell_type": "code",
|
| 677 |
+
"execution_count": 11,
|
| 678 |
+
"metadata": {
|
| 679 |
+
"tags": []
|
| 680 |
+
},
|
| 681 |
+
"outputs": [
|
| 682 |
+
{
|
| 683 |
+
"name": "stdout",
|
| 684 |
+
"output_type": "stream",
|
| 685 |
+
"text": [
|
| 686 |
+
"Collecting protobuf\n",
|
| 687 |
+
" Downloading protobuf-5.26.1-cp37-abi3-manylinux2014_x86_64.whl (302 kB)\n",
|
| 688 |
+
"\u001b[K |ββββββββββββββββββββββββββββββββ| 302 kB 4.3 MB/s eta 0:00:01\n",
|
| 689 |
+
"\u001b[?25hInstalling collected packages: protobuf\n",
|
| 690 |
+
"Successfully installed protobuf-5.26.1\n"
|
| 691 |
+
]
|
| 692 |
+
}
|
| 693 |
+
],
|
| 694 |
+
"source": [
|
| 695 |
+
"!pip install sentencepiece\n",
|
| 696 |
+
"!pip install protobuf"
|
| 697 |
+
]
|
| 698 |
+
},
|
| 699 |
+
{
|
| 700 |
+
"cell_type": "code",
|
| 701 |
+
"execution_count": 12,
|
| 702 |
+
"metadata": {
|
| 703 |
+
"colab": {
|
| 704 |
+
"base_uri": "https://localhost:8080/"
|
| 705 |
+
},
|
| 706 |
+
"id": "fR9c1mv3qXGz",
|
| 707 |
+
"outputId": "5b222c53-e0f8-4545-f191-ad6a90ab1373",
|
| 708 |
+
"tags": []
|
| 709 |
+
},
|
| 710 |
+
"outputs": [
|
| 711 |
+
{
|
| 712 |
+
"name": "stderr",
|
| 713 |
+
"output_type": "stream",
|
| 714 |
+
"text": [
|
| 715 |
+
"/home/user/miniconda/lib/python3.9/site-packages/transformers/models/vit/feature_extraction_vit.py:28: FutureWarning: The class ViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please use ViTImageProcessor instead.\n",
|
| 716 |
+
" warnings.warn(\n"
|
| 717 |
+
]
|
| 718 |
+
},
|
| 719 |
+
{
|
| 720 |
+
"name": "stdout",
|
| 721 |
+
"output_type": "stream",
|
| 722 |
+
"text": [
|
| 723 |
+
"an old fashioned clock sitting on top of a table \n"
|
| 724 |
+
]
|
| 725 |
+
}
|
| 726 |
+
],
|
| 727 |
+
"source": [
|
| 728 |
+
"from transformers import AutoProcessor, AutoModel, VisionEncoderDecoderModel, ViTFeatureExtractor, AutoTokenizer\n",
|
| 729 |
+
"import torch\n",
|
| 730 |
+
"from PIL import Image\n",
|
| 731 |
+
"\n",
|
| 732 |
+
"\n",
|
| 733 |
+
"model = AutoModel.from_pretrained(\"google/siglip-base-patch16-224\")\n",
|
| 734 |
+
"processor = AutoProcessor.from_pretrained(\"google/siglip-base-patch16-224\")\n",
|
| 735 |
+
"\n",
|
| 736 |
+
"\n",
|
| 737 |
+
"image = Image.open(\"data/avito4.jpeg\")\n",
|
| 738 |
+
"inputs = processor(images=image, return_tensors=\"pt\")\n",
|
| 739 |
+
"\n",
|
| 740 |
+
"\n",
|
| 741 |
+
"feature_extractor = ViTFeatureExtractor.from_pretrained(\"nlpconnect/vit-gpt2-image-captioning\")\n",
|
| 742 |
+
"tokenizer = AutoTokenizer.from_pretrained(\"nlpconnect/vit-gpt2-image-captioning\")\n",
|
| 743 |
+
"model = VisionEncoderDecoderModel.from_pretrained(\"nlpconnect/vit-gpt2-image-captioning\")\n",
|
| 744 |
+
"\n",
|
| 745 |
+
"pixel_values = feature_extractor(images=image, return_tensors=\"pt\").pixel_values\n",
|
| 746 |
+
"output_ids = model.generate(pixel_values, max_length=100, num_beams=5, early_stopping=True)\n",
|
| 747 |
+
"captions = tokenizer.batch_decode(output_ids, skip_special_tokens=True)\n",
|
| 748 |
+
"\n",
|
| 749 |
+
"image = preprocess(image).unsqueeze(0).to(device)\n",
|
| 750 |
+
"with torch.no_grad():\n",
|
| 751 |
+
" image_features = clip_model.encode_image(image)\n",
|
| 752 |
+
"\n",
|
| 753 |
+
"text_inputs = torch.cat([clip.tokenize(caption).to(device) for caption in captions]).to(device)\n",
|
| 754 |
+
"with torch.no_grad():\n",
|
| 755 |
+
" text_features = clip_model.encode_text(text_inputs)\n",
|
| 756 |
+
"\n",
|
| 757 |
+
"similarity_scores = image_features @ text_features.T\n",
|
| 758 |
+
"best_caption_idx = similarity_scores.argmax().item()\n",
|
| 759 |
+
"product_description = captions[best_caption_idx]\n",
|
| 760 |
+
"print(product_description)\n",
|
| 761 |
+
"\n",
|
| 762 |
+
"# a vase sitting on a shelf in a store => thuya\n",
|
| 763 |
+
"# a wooden bench sitting on top of a wooden floor => avito\n",
|
| 764 |
+
"## two old fashioned vases sitting next to each other => avito2\n",
|
| 765 |
+
"## three wooden vases sitting on top of a wooden floor => avito3\n",
|
| 766 |
+
"# an old fashioned clock sitting on top of a table => avito4\n",
|
| 767 |
+
"\n"
|
| 768 |
+
]
|
| 769 |
+
},
|
| 770 |
+
{
|
| 771 |
+
"cell_type": "code",
|
| 772 |
+
"execution_count": null,
|
| 773 |
+
"metadata": {
|
| 774 |
+
"colab": {
|
| 775 |
+
"base_uri": "https://localhost:8080/"
|
| 776 |
+
},
|
| 777 |
+
"id": "fR9c1mv3qXGz",
|
| 778 |
+
"outputId": "5b222c53-e0f8-4545-f191-ad6a90ab1373",
|
| 779 |
+
"tags": []
|
| 780 |
+
},
|
| 781 |
+
"outputs": [],
|
| 782 |
+
"source": []
|
| 783 |
+
},
|
| 784 |
+
{
|
| 785 |
+
"cell_type": "markdown",
|
| 786 |
+
"metadata": {
|
| 787 |
+
"id": "qRkGmKyYB7DM"
|
| 788 |
+
},
|
| 789 |
+
"source": [
|
| 790 |
+
"# Implemeting LLaVa"
|
| 791 |
+
]
|
| 792 |
+
},
|
| 793 |
+
{
|
| 794 |
+
"cell_type": "markdown",
|
| 795 |
+
"metadata": {
|
| 796 |
+
"id": "u6jq8q__zoOt"
|
| 797 |
+
},
|
| 798 |
+
"source": [
|
| 799 |
+
"https://colab.research.google.com/drive/1veefV17NcD1S4ou4nF8ABkfm8-TgU0Dr#scrollTo=XN2vJCPZk1UY"
|
| 800 |
+
]
|
| 801 |
+
},
|
| 802 |
+
{
|
| 803 |
+
"cell_type": "code",
|
| 804 |
+
"execution_count": null,
|
| 805 |
+
"metadata": {
|
| 806 |
+
"id": "QyO2UcBjzl71"
|
| 807 |
+
},
|
| 808 |
+
"outputs": [],
|
| 809 |
+
"source": []
|
| 810 |
+
}
|
| 811 |
+
],
|
| 812 |
+
"metadata": {
|
| 813 |
+
"colab": {
|
| 814 |
+
"provenance": []
|
| 815 |
+
},
|
| 816 |
+
"kernelspec": {
|
| 817 |
+
"display_name": "Python 3 (ipykernel)",
|
| 818 |
+
"language": "python",
|
| 819 |
+
"name": "python3"
|
| 820 |
+
},
|
| 821 |
+
"language_info": {
|
| 822 |
+
"codemirror_mode": {
|
| 823 |
+
"name": "ipython",
|
| 824 |
+
"version": 3
|
| 825 |
+
},
|
| 826 |
+
"file_extension": ".py",
|
| 827 |
+
"mimetype": "text/x-python",
|
| 828 |
+
"name": "python",
|
| 829 |
+
"nbconvert_exporter": "python",
|
| 830 |
+
"pygments_lexer": "ipython3",
|
| 831 |
+
"version": "3.9.5"
|
| 832 |
+
}
|
| 833 |
+
},
|
| 834 |
+
"nbformat": 4,
|
| 835 |
+
"nbformat_minor": 4
|
| 836 |
+
}
|
notebooks/LLaVa (1).ipynb
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
notebooks/SAM (1).ipynb
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|