File size: 5,526 Bytes
493c54a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
#!/usr/bin/env python
# coding: utf-8

# # Utility functions

# In[ ]:


import numpy as np
import matplotlib.pyplot as plt

def show_mask(mask, ax, random_color=False):
    if random_color:
        color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
    else:
        color = np.array([30/255, 144/255, 255/255, 0.6])
    h, w = mask.shape[-2:]
    mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
    ax.imshow(mask_image)


def show_box(box, ax):
    x0, y0 = box[0], box[1]
    w, h = box[2] - box[0], box[3] - box[1]
    ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))

def show_boxes_on_image(raw_image, boxes):
    plt.figure(figsize=(10,10))
    plt.imshow(raw_image)
    for box in boxes:
      show_box(box, plt.gca())
    plt.axis('on')
    plt.show()

def show_points_on_image(raw_image, input_points, input_labels=None):
    plt.figure(figsize=(10,10))
    plt.imshow(raw_image)
    input_points = np.array(input_points)
    if input_labels is None:
      labels = np.ones_like(input_points[:, 0])
    else:
      labels = np.array(input_labels)
    show_points(input_points, labels, plt.gca())
    plt.axis('on')
    plt.show()

def show_points_and_boxes_on_image(raw_image, boxes, input_points, input_labels=None):
    plt.figure(figsize=(10,10))
    plt.imshow(raw_image)
    input_points = np.array(input_points)
    if input_labels is None:
      labels = np.ones_like(input_points[:, 0])
    else:
      labels = np.array(input_labels)
    show_points(input_points, labels, plt.gca())
    for box in boxes:
      show_box(box, plt.gca())
    plt.axis('on')
    plt.show()


def show_points_and_boxes_on_image(raw_image, boxes, input_points, input_labels=None):
    plt.figure(figsize=(10,10))
    plt.imshow(raw_image)
    input_points = np.array(input_points)
    if input_labels is None:
      labels = np.ones_like(input_points[:, 0])
    else:
      labels = np.array(input_labels)
    show_points(input_points, labels, plt.gca())
    for box in boxes:
      show_box(box, plt.gca())
    plt.axis('on')
    plt.show()


def show_points(coords, labels, ax, marker_size=375):
    pos_points = coords[labels==1]
    neg_points = coords[labels==0]
    ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
    ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)


def show_masks_on_image(raw_image, masks, scores):
    if len(masks.shape) == 4:
      masks = masks.squeeze()
    if scores.shape[0] == 1:
      scores = scores.squeeze()

    nb_predictions = scores.shape[-1]
    fig, axes = plt.subplots(1, nb_predictions, figsize=(15, 15))

    for i, (mask, score) in enumerate(zip(masks, scores)):
      mask = mask.cpu().detach()
      axes[i].imshow(np.array(raw_image))
      show_mask(mask, axes[i])
      axes[i].title.set_text(f"Mask {i+1}, Score: {score.item():.3f}")
      axes[i].axis("off")
    plt.show()


# # Model loading

# In[ ]:


import torch
from transformers import SamModel, SamProcessor

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = SamModel.from_pretrained("facebook/sam-vit-huge").to(device)
processor = SamProcessor.from_pretrained("facebook/sam-vit-huge")


# In[ ]:


from PIL import Image
import requests

img_url = "thuya.jpeg"
raw_image = Image.open(img_url)

plt.imshow(raw_image)


# ## Step 1: Retrieve the image embeddings

# In[ ]:


inputs = processor(raw_image, return_tensors="pt").to(device)
image_embeddings = model.get_image_embeddings(inputs["pixel_values"])


# In[ ]:


input_points = [[[200, 300]]]
show_points_on_image(raw_image, input_points[0])


# In[ ]:


inputs = processor(raw_image, input_points=input_points, return_tensors="pt").to(device)
# pop the pixel_values as they are not neded
inputs.pop("pixel_values", None)
inputs.update({"image_embeddings": image_embeddings})

with torch.no_grad():
    outputs = model(**inputs)

masks = processor.image_processor.post_process_masks(outputs.pred_masks.cpu(), inputs["original_sizes"].cpu(), inputs["reshaped_input_sizes"].cpu())
scores = outputs.iou_scores


# In[ ]:


show_masks_on_image(raw_image, masks[0], scores)


# ## Export the masked images

# In[92]:


import cv2

if len(masks[0].shape) == 4:
      masks[0] = masks[0].squeeze()
if scores.shape[0] == 1:
      scores = scores.squeeze()

nb_predictions = scores.shape[-1]
fig, axes = plt.subplots(1, nb_predictions, figsize=(15, 15))
for i, (mask, score) in enumerate(zip(masks[0], scores)):
    mask = mask.cpu().detach()
    axes[i].imshow(np.array(raw_image))
    # show_mask(mask, axes[i])

    mask_image = (mask.numpy() * 255).astype(np.uint8)  # Convert to uint8 format
    cv2.imwrite('mask.png', mask_image)

    image = cv2.imread('thuya.jpeg')

    color_mask = np.zeros_like(image)
    color_mask[mask > 0.5] = [30, 144, 255] # Choose any color you like
    masked_image = cv2.addWeighted(image, 0.6, color_mask, 0.4, 0)

    color = np.array([30/255, 144/255, 255/255])
    #mask_image =  * color.reshape(1, 1, -1)

    new_image = -image* np.tile(mask_image[...,None], 3)

    cv2.imwrite('masked_image2.png', cv2.cvtColor(new_image, cv2.COLOR_RGB2BGR))



# In[85]:


.shape