Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from PIL import Image
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
from transformers import pipeline
|
5 |
+
import os
|
6 |
+
|
7 |
+
# Initialize the vision agent (same as your original)
|
8 |
+
agent = pipeline("image-classification", model="google/vit-base-patch16-224")
|
9 |
+
|
10 |
+
class GradioVisionAnalyzer:
|
11 |
+
def __init__(self):
|
12 |
+
self.min_confidence = 0.1 # Default confidence threshold
|
13 |
+
|
14 |
+
def analyze_image(self, image, confidence_threshold):
|
15 |
+
"""Gradio-compatible analysis function"""
|
16 |
+
self.min_confidence = confidence_threshold/100 # Convert slider % to decimal
|
17 |
+
|
18 |
+
try:
|
19 |
+
results = agent(image)
|
20 |
+
filtered_results = [r for r in results if r['score'] >= self.min_confidence]
|
21 |
+
|
22 |
+
if not filtered_results:
|
23 |
+
return None, "No confident identifications found (adjust confidence threshold)"
|
24 |
+
|
25 |
+
# Create visualization
|
26 |
+
fig = self.create_visualization(image, filtered_results)
|
27 |
+
return fig, self.format_results(filtered_results)
|
28 |
+
|
29 |
+
except Exception as e:
|
30 |
+
return None, f"Error: {str(e)}"
|
31 |
+
|
32 |
+
def create_visualization(self, img, results):
|
33 |
+
"""Adapted matplotlib visualization for Gradio"""
|
34 |
+
plt.figure(figsize=(10, 5))
|
35 |
+
|
36 |
+
# Show original image
|
37 |
+
plt.subplot(1, 2, 1)
|
38 |
+
plt.imshow(img)
|
39 |
+
plt.axis('off')
|
40 |
+
plt.title("Uploaded Image")
|
41 |
+
|
42 |
+
# Show results as bar chart
|
43 |
+
plt.subplot(1, 2, 2)
|
44 |
+
labels = [r['label'] for r in results]
|
45 |
+
scores = [r['score'] for r in results]
|
46 |
+
colors = plt.cm.viridis([s/max(scores) for s in scores])
|
47 |
+
|
48 |
+
bars = plt.barh(labels, scores, color=colors)
|
49 |
+
plt.xlabel('Confidence Score')
|
50 |
+
plt.title(f'Results (Threshold: {self.min_confidence:.0%})')
|
51 |
+
plt.xlim(0, 1)
|
52 |
+
|
53 |
+
for bar in bars:
|
54 |
+
width = bar.get_width()
|
55 |
+
plt.text(min(width + 0.01, 0.99),
|
56 |
+
bar.get_y() + bar.get_height()/2,
|
57 |
+
f'{width:.0%}',
|
58 |
+
va='center',
|
59 |
+
ha='left')
|
60 |
+
|
61 |
+
plt.tight_layout()
|
62 |
+
return plt.gcf() # Return the figure object
|
63 |
+
|
64 |
+
def format_results(self, results):
|
65 |
+
"""Format results for text output"""
|
66 |
+
output = f"Minimum Confidence: {self.min_confidence:.0%}\n\n"
|
67 |
+
for i, result in enumerate(results, 1):
|
68 |
+
output += f"{i}. {result['label']} ({result['score']:.0%} confidence)\n"
|
69 |
+
return output
|
70 |
+
|
71 |
+
# Initialize analyzer
|
72 |
+
analyzer = GradioVisionAnalyzer()
|
73 |
+
|
74 |
+
# Create Gradio interface
|
75 |
+
with gr.Blocks(title="AI Vision Agent for Security Compliance") as demo:
|
76 |
+
gr.Markdown("""
|
77 |
+
## π‘οΈ AI Security Compliance Assistant
|
78 |
+
Upload images to detect policy violations (unattended devices, clean-desk issues, etc.)
|
79 |
+
""")
|
80 |
+
|
81 |
+
with gr.Row():
|
82 |
+
with gr.Column():
|
83 |
+
image_input = gr.Image(type="pil", label="Upload Security Image")
|
84 |
+
confidence_slider = gr.Slider(0, 100, value=10, label="Confidence Threshold (%)")
|
85 |
+
analyze_btn = gr.Button("Analyze Image")
|
86 |
+
|
87 |
+
with gr.Column():
|
88 |
+
plot_output = gr.Plot(label="Detection Results")
|
89 |
+
text_output = gr.Textbox(label="Detailed Findings", interactive=False)
|
90 |
+
|
91 |
+
# Example images for quick testing
|
92 |
+
gr.Examples(
|
93 |
+
examples=["example1.jpg", "example2.jpg"],
|
94 |
+
inputs=image_input,
|
95 |
+
label="Try sample images"
|
96 |
+
)
|
97 |
+
|
98 |
+
analyze_btn.click(
|
99 |
+
fn=analyzer.analyze_image,
|
100 |
+
inputs=[image_input, confidence_slider],
|
101 |
+
outputs=[plot_output, text_output]
|
102 |
+
)
|
103 |
+
|
104 |
+
# For Hugging Face Spaces
|
105 |
+
demo.launch()
|