ThiSecur's picture
Update app.py
439bd4c verified
import gradio as gr
from PIL import Image
import matplotlib.pyplot as plt
from transformers import pipeline
import os
# Initialize the vision agent (same as your original)
agent = pipeline("image-classification", model="google/vit-base-patch16-224")
class GradioVisionAnalyzer:
def __init__(self):
self.min_confidence = 0.1 # Default confidence threshold
def analyze_image(self, image, confidence_threshold):
"""Gradio-compatible analysis function"""
self.min_confidence = confidence_threshold/100 # Convert slider % to decimal
try:
results = agent(image)
filtered_results = [r for r in results if r['score'] >= self.min_confidence]
if not filtered_results:
return None, "No confident identifications found (adjust confidence threshold)"
# Create visualization
fig = self.create_visualization(image, filtered_results)
return fig, self.format_results(filtered_results)
except Exception as e:
return None, f"Error: {str(e)}"
def create_visualization(self, img, results):
"""Adapted matplotlib visualization for Gradio"""
plt.figure(figsize=(10, 5))
# Show original image
plt.subplot(1, 2, 1)
plt.imshow(img)
plt.axis('off')
plt.title("Uploaded Image")
# Show results as bar chart
plt.subplot(1, 2, 2)
labels = [r['label'] for r in results]
scores = [r['score'] for r in results]
colors = plt.cm.viridis([s/max(scores) for s in scores])
bars = plt.barh(labels, scores, color=colors)
plt.xlabel('Confidence Score')
plt.title(f'Results (Threshold: {self.min_confidence:.0%})')
plt.xlim(0, 1)
for bar in bars:
width = bar.get_width()
plt.text(min(width + 0.01, 0.99),
bar.get_y() + bar.get_height()/2,
f'{width:.0%}',
va='center',
ha='left')
plt.tight_layout()
return plt.gcf() # Return the figure object
def format_results(self, results):
"""Format results for text output"""
output = f"Minimum Confidence: {self.min_confidence:.0%}\n\n"
for i, result in enumerate(results, 1):
output += f"{i}. {result['label']} ({result['score']:.0%} confidence)\n"
return output
# Initialize analyzer
analyzer = GradioVisionAnalyzer()
# Create Gradio interface
with gr.Blocks(title="AI Vision Agent for Security Compliance") as demo:
gr.Markdown("""
## πŸ›‘οΈ AI Security Compliance Assistant
Upload images to detect policy violations (unattended devices, clean-desk issues, etc.)
""")
with gr.Row():
with gr.Column():
image_input = gr.Image(type="pil", label="Upload Security Image")
confidence_slider = gr.Slider(0, 100, value=10, label="Confidence Threshold (%)")
analyze_btn = gr.Button("Analyze Image")
with gr.Column():
plot_output = gr.Plot(label="Detection Results")
text_output = gr.Textbox(label="Detailed Findings", interactive=False)
# Example images for quick testing
gr.Examples(
examples=["apresentation.png", "image1.png" , "image2.jpg" , "image3.png"],
inputs=image_input,
label="Try sample images"
)
analyze_btn.click(
fn=analyzer.analyze_image,
inputs=[image_input, confidence_slider],
outputs=[plot_output, text_output]
)
# For Hugging Face Spaces
demo.launch()