Spaces:
Sleeping
Sleeping
Update Gradio_UI.py
Browse files- Gradio_UI.py +40 -270
Gradio_UI.py
CHANGED
@@ -1,288 +1,58 @@
|
|
1 |
-
import
|
2 |
-
import os
|
3 |
-
import re
|
4 |
-
import shutil
|
5 |
from typing import Optional
|
6 |
from smolagents.agent_types import AgentAudio, AgentImage, AgentText, handle_agent_output_types
|
7 |
from smolagents.agents import ActionStep, MultiStepAgent
|
8 |
from smolagents.memory import MemoryStep
|
9 |
-
from smolagents.utils import _is_package_available
|
10 |
-
|
11 |
-
def pull_messages_from_step(step_log: MemoryStep):
|
12 |
-
"""Extract ChatMessage objects from agent steps with proper nesting"""
|
13 |
-
import gradio as gr
|
14 |
-
|
15 |
-
if isinstance(step_log, ActionStep):
|
16 |
-
step_number = f"Step {step_log.step_number}" if step_log.step_number is not None else ""
|
17 |
-
yield gr.ChatMessage(role="assistant", content=f"**{step_number}**")
|
18 |
-
|
19 |
-
if hasattr(step_log, "model_output") and step_log.model_output is not None:
|
20 |
-
model_output = step_log.model_output.strip()
|
21 |
-
model_output = re.sub(r"```\s*<end_code>", "```", model_output)
|
22 |
-
model_output = re.sub(r"<end_code>\s*```", "```", model_output)
|
23 |
-
model_output = re.sub(r"```\s*\n\s*<end_code>", "```", model_output)
|
24 |
-
model_output = model_output.strip()
|
25 |
-
yield gr.ChatMessage(role="assistant", content=model_output)
|
26 |
-
|
27 |
-
if hasattr(step_log, "tool_calls") and step_log.tool_calls is not None:
|
28 |
-
first_tool_call = step_log.tool_calls[0]
|
29 |
-
used_code = first_tool_call.name == "python_interpreter"
|
30 |
-
parent_id = f"call_{len(step_log.tool_calls)}"
|
31 |
-
|
32 |
-
args = first_tool_call.arguments
|
33 |
-
if isinstance(args, dict):
|
34 |
-
content = str(args.get("answer", str(args)))
|
35 |
-
else:
|
36 |
-
content = str(args).strip()
|
37 |
-
|
38 |
-
if used_code:
|
39 |
-
content = re.sub(r"```.*?\n", "", content)
|
40 |
-
content = re.sub(r"\s*<end_code>\s*", "", content)
|
41 |
-
content = content.strip()
|
42 |
-
if not content.startswith("```python"):
|
43 |
-
content = f"```python\n{content}\n```"
|
44 |
-
|
45 |
-
parent_message_tool = gr.ChatMessage(
|
46 |
-
role="assistant",
|
47 |
-
content=content,
|
48 |
-
metadata={
|
49 |
-
"title": f"🛠️ Used tool {first_tool_call.name}",
|
50 |
-
"id": parent_id,
|
51 |
-
"status": "pending",
|
52 |
-
},
|
53 |
-
)
|
54 |
-
yield parent_message_tool
|
55 |
-
|
56 |
-
if hasattr(step_log, "observations") and (step_log.observations is not None and step_log.observations.strip()):
|
57 |
-
log_content = step_log.observations.strip()
|
58 |
-
if log_content:
|
59 |
-
log_content = re.sub(r"^Execution logs:\s*", "", log_content)
|
60 |
-
yield gr.ChatMessage(
|
61 |
-
role="assistant",
|
62 |
-
content=f"{log_content}",
|
63 |
-
metadata={"title": "📝 Execution Logs", "parent_id": parent_id, "status": "done"},
|
64 |
-
)
|
65 |
-
|
66 |
-
if hasattr(step_log, "error") and step_log.error is not None:
|
67 |
-
yield gr.ChatMessage(
|
68 |
-
role="assistant",
|
69 |
-
content=str(step_log.error),
|
70 |
-
metadata={"title": "💥 Error", "parent_id": parent_id, "status": "done"},
|
71 |
-
)
|
72 |
-
|
73 |
-
parent_message_tool.metadata["status"] = "done"
|
74 |
-
|
75 |
-
elif hasattr(step_log, "error") and step_log.error is not None:
|
76 |
-
yield gr.ChatMessage(role="assistant", content=str(step_log.error), metadata={"title": "💥 Error"})
|
77 |
-
|
78 |
-
step_footnote = f"{step_number}"
|
79 |
-
if hasattr(step_log, "input_token_count") and hasattr(step_log, "output_token_count"):
|
80 |
-
token_str = f" | Input-tokens:{step_log.input_token_count:,} | Output-tokens:{step_log.output_token_count:,}"
|
81 |
-
step_footnote += token_str
|
82 |
-
if hasattr(step_log, "duration"):
|
83 |
-
step_duration = f" | Duration: {round(float(step_log.duration), 2)}" if step_log.duration else None
|
84 |
-
step_footnote += step_duration
|
85 |
-
step_footnote = f"""<span style="color: #bbbbc2; font-size: 12px;">{step_footnote}</span> """
|
86 |
-
yield gr.ChatMessage(role="assistant", content=f"{step_footnote}")
|
87 |
-
yield gr.ChatMessage(role="assistant", content="-----")
|
88 |
-
|
89 |
-
def stream_to_gradio(agent, task: str, reset_agent_memory: bool = False, additional_args: Optional[dict] = None):
|
90 |
-
"""Stream agent responses to Gradio interface"""
|
91 |
-
if not _is_package_available("gradio"):
|
92 |
-
raise ModuleNotFoundError("Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`")
|
93 |
-
import gradio as gr
|
94 |
-
|
95 |
-
total_input_tokens = 0
|
96 |
-
total_output_tokens = 0
|
97 |
-
|
98 |
-
for step_log in agent.run(task, stream=True, reset=reset_agent_memory, additional_args=additional_args):
|
99 |
-
if hasattr(agent.model, "last_input_token_count"):
|
100 |
-
total_input_tokens += agent.model.last_input_token_count
|
101 |
-
total_output_tokens += agent.model.last_output_token_count
|
102 |
-
if isinstance(step_log, ActionStep):
|
103 |
-
step_log.input_token_count = agent.model.last_input_token_count
|
104 |
-
step_log.output_token_count = agent.model.last_output_token_count
|
105 |
-
|
106 |
-
for message in pull_messages_from_step(step_log):
|
107 |
-
yield message
|
108 |
-
|
109 |
-
final_answer = step_log
|
110 |
-
final_answer = handle_agent_output_types(final_answer)
|
111 |
-
|
112 |
-
if isinstance(final_answer, AgentText):
|
113 |
-
yield gr.ChatMessage(
|
114 |
-
role="assistant",
|
115 |
-
content=f"**Final answer:**\n{final_answer.to_string()}\n",
|
116 |
-
)
|
117 |
-
elif isinstance(final_answer, AgentImage):
|
118 |
-
yield gr.ChatMessage(
|
119 |
-
role="assistant",
|
120 |
-
content={"path": final_answer.to_string(), "mime_type": "image/png"},
|
121 |
-
)
|
122 |
-
elif isinstance(final_answer, AgentAudio):
|
123 |
-
yield gr.ChatMessage(
|
124 |
-
role="assistant",
|
125 |
-
content={"path": final_answer.to_string(), "mime_type": "audio/wav"},
|
126 |
-
)
|
127 |
-
else:
|
128 |
-
yield gr.ChatMessage(role="assistant", content=f"**Final answer:** {str(final_answer)}")
|
129 |
|
130 |
class GradioUI:
|
131 |
-
"""
|
132 |
|
133 |
-
def __init__(self, agent: MultiStepAgent
|
134 |
-
if not _is_package_available("gradio"):
|
135 |
-
raise ModuleNotFoundError("Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`")
|
136 |
self.agent = agent
|
137 |
-
self.file_upload_folder = file_upload_folder
|
138 |
-
if self.file_upload_folder is not None:
|
139 |
-
if not os.path.exists(file_upload_folder):
|
140 |
-
os.makedirs(file_upload_folder, exist_ok=True)
|
141 |
|
142 |
-
def launch(self
|
143 |
-
|
144 |
-
|
145 |
-
with gr.Blocks(title="Multi-Tool AI Assistant", theme=gr.themes.Soft(), fill_height=True) as demo:
|
146 |
-
# Header with capabilities overview
|
147 |
gr.Markdown("""
|
148 |
-
#
|
149 |
-
|
150 |
-
|
151 |
-
-
|
152 |
-
-
|
153 |
-
-
|
154 |
-
-
|
155 |
-
-
|
156 |
-
- **Code execution** (e.g., "Calculate factorial of 5")
|
157 |
""")
|
158 |
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
with gr.Row():
|
165 |
-
chatbot = gr.Chatbot(
|
166 |
-
label="Conversation",
|
167 |
-
avatar_images=(
|
168 |
-
None,
|
169 |
-
"https://huggingface.co/datasets/agents-course/course-images/resolve/main/en/communication/Alfred.png",
|
170 |
-
),
|
171 |
-
height=500,
|
172 |
-
render=True,
|
173 |
-
bubble_full_width=False
|
174 |
)
|
|
|
175 |
|
176 |
-
# File upload and input section
|
177 |
with gr.Row():
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
|
|
|
|
|
|
|
|
190 |
|
191 |
-
|
192 |
-
|
193 |
-
placeholder="Type your question or request here...",
|
194 |
-
label="Your message",
|
195 |
-
lines=2,
|
196 |
-
max_lines=5,
|
197 |
-
container=False
|
198 |
-
)
|
199 |
-
|
200 |
-
# Control buttons
|
201 |
-
with gr.Row():
|
202 |
-
submit_btn = gr.Button("Send", variant="primary")
|
203 |
-
clear_btn = gr.Button("Clear Chat")
|
204 |
-
|
205 |
-
# Event handlers
|
206 |
-
upload_file.change(
|
207 |
-
self.upload_file,
|
208 |
-
[upload_file, file_uploads_log],
|
209 |
-
[upload_status, file_uploads_log],
|
210 |
-
)
|
211 |
-
|
212 |
-
text_input.submit(
|
213 |
-
self.log_user_message,
|
214 |
-
[text_input, file_uploads_log],
|
215 |
-
[stored_messages, text_input],
|
216 |
-
).then(
|
217 |
-
self.interact_with_agent,
|
218 |
-
[stored_messages, chatbot],
|
219 |
-
[chatbot]
|
220 |
-
)
|
221 |
-
|
222 |
-
submit_btn.click(
|
223 |
-
self.log_user_message,
|
224 |
-
[text_input, file_uploads_log],
|
225 |
-
[stored_messages, text_input],
|
226 |
-
).then(
|
227 |
-
self.interact_with_agent,
|
228 |
-
[stored_messages, chatbot],
|
229 |
-
[chatbot]
|
230 |
-
)
|
231 |
|
232 |
-
|
233 |
-
|
234 |
-
outputs=[chatbot, stored_messages, file_uploads_log]
|
235 |
-
)
|
236 |
-
|
237 |
-
demo.launch(**kwargs)
|
238 |
-
|
239 |
-
def upload_file(self, file, file_uploads_log, allowed_file_types=[
|
240 |
-
"application/pdf",
|
241 |
-
"application/vnd.openxmlformats-officedocument.wordprocessingml.document",
|
242 |
-
"text/plain"]):
|
243 |
-
import gradio as gr
|
244 |
-
if file is None:
|
245 |
-
return gr.Textbox("No file uploaded", visible=True), file_uploads_log
|
246 |
-
|
247 |
-
try:
|
248 |
-
mime_type, _ = mimetypes.guess_type(file.name)
|
249 |
-
except Exception as e:
|
250 |
-
return gr.Textbox(f"Error: {e}", visible=True), file_uploads_log
|
251 |
-
|
252 |
-
if mime_type not in allowed_file_types:
|
253 |
-
return gr.Textbox("File type disallowed", visible=True), file_uploads_log
|
254 |
-
|
255 |
-
original_name = os.path.basename(file.name)
|
256 |
-
sanitized_name = re.sub(r"[^\w\-.]", "_", original_name)
|
257 |
-
|
258 |
-
type_to_ext = {}
|
259 |
-
for ext, t in mimetypes.types_map.items():
|
260 |
-
if t not in type_to_ext:
|
261 |
-
type_to_ext[t] = ext
|
262 |
-
|
263 |
-
sanitized_name = sanitized_name.split(".")[:-1]
|
264 |
-
sanitized_name.append("" + type_to_ext[mime_type])
|
265 |
-
sanitized_name = "".join(sanitized_name)
|
266 |
-
|
267 |
-
file_path = os.path.join(self.file_upload_folder, os.path.basename(sanitized_name))
|
268 |
-
shutil.copy(file.name, file_path)
|
269 |
-
|
270 |
-
return gr.Textbox(f"File uploaded: {file_path}", visible=True), file_uploads_log + [file_path]
|
271 |
-
|
272 |
-
def log_user_message(self, text_input, file_uploads_log):
|
273 |
-
return (
|
274 |
-
text_input + (
|
275 |
-
f"\nYou have been provided with these files, which might be helpful or not: {file_uploads_log}"
|
276 |
-
if len(file_uploads_log) > 0 else ""
|
277 |
-
),
|
278 |
-
"",
|
279 |
-
)
|
280 |
|
281 |
-
|
282 |
-
import gradio as gr
|
283 |
-
messages.append(gr.ChatMessage(role="user", content=prompt))
|
284 |
-
yield messages
|
285 |
-
for msg in stream_to_gradio(self.agent, task=prompt, reset_agent_memory=False):
|
286 |
-
messages.append(msg)
|
287 |
-
yield messages
|
288 |
-
yield messages
|
|
|
1 |
+
import gradio as gr
|
|
|
|
|
|
|
2 |
from typing import Optional
|
3 |
from smolagents.agent_types import AgentAudio, AgentImage, AgentText, handle_agent_output_types
|
4 |
from smolagents.agents import ActionStep, MultiStepAgent
|
5 |
from smolagents.memory import MemoryStep
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
class GradioUI:
|
8 |
+
"""Simplified Gradio interface for Hugging Face Spaces"""
|
9 |
|
10 |
+
def __init__(self, agent: MultiStepAgent):
|
|
|
|
|
11 |
self.agent = agent
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
def launch(self):
|
14 |
+
with gr.Blocks(title="AI Assistant", theme=gr.themes.Soft()) as demo:
|
|
|
|
|
|
|
15 |
gr.Markdown("""
|
16 |
+
# 🤖 AI Assistant
|
17 |
+
**Capabilities:**
|
18 |
+
- Time zone conversions
|
19 |
+
- Weather lookups
|
20 |
+
- Unit conversions
|
21 |
+
- Web search
|
22 |
+
- Image generation
|
23 |
+
- Code execution
|
|
|
24 |
""")
|
25 |
|
26 |
+
chatbot = gr.Chatbot(
|
27 |
+
height=500,
|
28 |
+
avatar_images=(
|
29 |
+
None,
|
30 |
+
"https://huggingface.co/datasets/agents-course/course-images/resolve/main/en/communication/Alfred.png",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
)
|
32 |
+
)
|
33 |
|
|
|
34 |
with gr.Row():
|
35 |
+
msg = gr.Textbox(
|
36 |
+
placeholder="Ask me anything...",
|
37 |
+
container=False,
|
38 |
+
scale=7
|
39 |
+
)
|
40 |
+
submit = gr.Button("Send", scale=1)
|
41 |
+
|
42 |
+
def respond(message, chat_history):
|
43 |
+
chat_history.append((message, ""))
|
44 |
+
full_response = ""
|
45 |
+
for step_log in self.agent.run(message, stream=True):
|
46 |
+
if isinstance(step_log, ActionStep):
|
47 |
+
if hasattr(step_log, 'model_output') and step_log.model_output:
|
48 |
+
full_response += step_log.model_output + "\n"
|
49 |
+
if hasattr(step_log, 'observations') and step_log.observations:
|
50 |
+
full_response += step_log.observations + "\n"
|
51 |
|
52 |
+
chat_history[-1] = (message, full_response)
|
53 |
+
return "", chat_history
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
+
msg.submit(respond, [msg, chatbot], [msg, chatbot])
|
56 |
+
submit.click(respond, [msg, chatbot], [msg, chatbot])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|