from fastapi import APIRouter from datetime import datetime from datasets import load_dataset from sklearn.metrics import accuracy_score import numpy as np import random import os import torch from torch.utils.data import DataLoader from .utils.evaluation import AudioEvaluationRequest from .utils.emissions import tracker, clean_emissions_data, get_space_info from data import FFTDataset from models import DualEncoder from train import Trainer from data_utils import collate_fn, Container import yaml from dotenv import load_dotenv load_dotenv() router = APIRouter() DESCRIPTION = "Random Baseline" ROUTE = "/audio" @router.post(ROUTE, tags=["Audio Task"], description=DESCRIPTION) async def evaluate_audio(request: AudioEvaluationRequest): """ Evaluate audio classification for rainforest sound detection. Current Model: Random Baseline - Makes random predictions from the label space (0-1) - Used as a baseline for comparison """ # Get space info username, space_url = get_space_info() # Define the label mapping LABEL_MAPPING = { "chainsaw": 0, "environment": 1 } # Load and prepare the dataset # Because the dataset is gated, we need to use the HF_TOKEN environment variable to authenticate dataset = load_dataset(request.dataset_name,token=os.getenv("HF_TOKEN")) # Split dataset train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed) test_dataset = train_test["test"] # Start tracking emissions tracker.start() tracker.start_task("inference") #-------------------------------------------------------------------------------------------- # YOUR MODEL INFERENCE CODE HERE # Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked. #-------------------------------------------------------------------------------------------- device = torch.device("cuda" if torch.cuda.is_available() else "cpu") args_path = 'config.yaml' data_args = Container(**yaml.safe_load(open(args_path, 'r'))['Data']) model_args = Container(**yaml.safe_load(open(args_path, 'r'))['CNNEncoder']) model_args_f = Container(**yaml.safe_load(open(args_path, 'r'))['CNNEncoder_f']) conformer_args = Container(**yaml.safe_load(open(args_path, 'r'))['Conformer']) test_dataset = FFTDataset(test_dataset) test_dl = DataLoader(test_dataset, batch_size=data_args.batch_size, collate_fn=collate_fn) model = DualEncoder(model_args, model_args_f, conformer_args) model = model.to(device) missing, unexpected = model.load_state_dict(torch.load(model_args.checkpoint_path)) loss_fn = torch.nn.BCEWithLogitsLoss() optimizer = torch.optim.Adam(model.parameters(), lr=5e-4) trainer = Trainer(model=model, optimizer=optimizer, criterion=loss_fn, output_dim=model_args.output_dim, scaler=None, scheduler=None, train_dataloader=None, val_dataloader=None, device=device, exp_num='test', log_path=None, range_update=None, accumulation_step=1, max_iter=np.inf, exp_name=f"frugal_cnnencoder_inference") predictions, acc = trainer.predict(test_dl, device=device) # Make random predictions (placeholder for actual model inference) true_labels = test_dataset["label"] #-------------------------------------------------------------------------------------------- # YOUR MODEL INFERENCE STOPS HERE #-------------------------------------------------------------------------------------------- # Stop tracking emissions emissions_data = tracker.stop_task() # Calculate accuracy accuracy = accuracy_score(true_labels, predictions) # Prepare results dictionary results = { "username": username, "space_url": space_url, "submission_timestamp": datetime.now().isoformat(), "model_description": DESCRIPTION, "accuracy": float(accuracy), "energy_consumed_wh": emissions_data.energy_consumed * 1000, "emissions_gco2eq": emissions_data.emissions * 1000, "emissions_data": clean_emissions_data(emissions_data), "api_route": ROUTE, "dataset_config": { "dataset_name": request.dataset_name, "test_size": request.test_size, "test_seed": request.test_seed } } return results