Spaces:
Sleeping
Sleeping
File size: 5,461 Bytes
49ebc1f 2f54ec8 49ebc1f 2f54ec8 99dc7bf 49ebc1f 2f54ec8 49ebc1f 2f54ec8 49ebc1f 2f54ec8 49ebc1f 2f54ec8 49ebc1f 2f54ec8 49ebc1f 2f54ec8 49ebc1f 2f54ec8 49ebc1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
from torch.utils.data import DataLoader
from .utils.data import FFTDataset, SplitDataset
from datasets import load_dataset
from .utils.train import Trainer, XGBoostTrainer
from .utils.models import CNNKan, KanEncoder, CNNKanFeaturesEncoder
from .utils.data_utils import *
from huggingface_hub import login
import yaml
import datetime
import json
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from collections import OrderedDict
# local_rank = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
current_date = datetime.date.today().strftime("%Y-%m-%d")
datetime_dir = f"frugal_{current_date}"
args_dir = 'tasks/utils/config.yaml'
data_args = Container(**yaml.safe_load(open(args_dir, 'r'))['Data'])
exp_num = data_args.exp_num
model_name = data_args.model_name
model_args = Container(**yaml.safe_load(open(args_dir, 'r'))['CNNEncoder'])
mlp_args = Container(**yaml.safe_load(open(args_dir, 'r'))['MLP'])
model_args_f = Container(**yaml.safe_load(open(args_dir, 'r'))['CNNEncoder_f'])
conformer_args = Container(**yaml.safe_load(open(args_dir, 'r'))['Conformer'])
kan_args = Container(**yaml.safe_load(open(args_dir, 'r'))['KAN'])
boost_args = Container(**yaml.safe_load(open(args_dir, 'r'))['XGBoost'])
if not os.path.exists(f"{data_args.log_dir}/{datetime_dir}"):
os.makedirs(f"{data_args.log_dir}/{datetime_dir}")
with open("../logs//token.txt", "r") as f:
api_key = f.read()
# local_rank, world_size, gpus_per_node = setup()
local_rank = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
login(api_key)
dataset = load_dataset("rfcx/frugalai", streaming=True)
train_ds = SplitDataset(FFTDataset(dataset["train"]), is_train=True)
train_dl = DataLoader(train_ds, batch_size=data_args.batch_size, collate_fn=collate_fn)
val_ds = SplitDataset(FFTDataset(dataset["train"]), is_train=False)
val_dl = DataLoader(val_ds,batch_size=data_args.batch_size, collate_fn=collate_fn)
test_ds = FFTDataset(dataset["test"])
test_dl = DataLoader(test_ds,batch_size=data_args.batch_size, collate_fn=collate_fn)
# data = []
#
# # Iterate over the dataset
# for i, batch in enumerate(train_ds):
# label = batch['label']
# features = batch['audio']['features']
#
# # Flatten the nested dictionary structure
# feature_dict = {'label': label}
# for k, v in features.items():
# if isinstance(v, dict):
# for sub_k, sub_v in v.items():
# feature_dict[f"{k}_{sub_k}"] = sub_v[0].item() # Aggregate (e.g., mean)
# else:
# print(k, v.shape) # Aggregate (e.g., mean)
#
# data.append(feature_dict)
# print(i)
#
# if i > 1000: # Limit to 10 iterations
# break
#
# # Convert to DataFrame
# df = pd.DataFrame(data)
# Plot distributions colored by label
# plt.figure()
# for col in df.columns:
# if col != 'label':
# sns.kdeplot(df, x=col, hue='label', fill=True, alpha=0.5)
# plt.title(f'Distribution of {col}')
# plt.show()
# exit()
# trainer = XGBoostTrainer(boost_args.get_dict(), train_ds, val_ds, test_ds)
# res = trainer.fit()
# trainer.predict()
# trainer.plot_results(res)
# exit()
# model = DualEncoder(model_args, model_args_f, conformer_args)
# model = FasterKAN([18000,64,64,16,1])
model = CNNKan(model_args, conformer_args, kan_args.get_dict())
# model = CNNKanFeaturesEncoder(model_args, mlp_args, kan_args.get_dict())
# model.kan.speed()
# model = KanEncoder(kan_args.get_dict())
model = model.to(local_rank)
# state_dict = torch.load(data_args.checkpoint_path, map_location=torch.device('cpu'))
# new_state_dict = OrderedDict()
# for key, value in state_dict.items():
# if key.startswith('module.'):
# key = key[7:]
# new_state_dict[key] = value
# missing, unexpected = model.load_state_dict(new_state_dict)
# model = DDP(model, device_ids=[local_rank], output_device=local_rank)
num_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f"Number of parameters: {num_params}")
loss_fn = torch.nn.BCEWithLogitsLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
total_steps = int(data_args.num_epochs) * 1000
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer,
T_max=total_steps,
eta_min=float((5e-4)/10))
# missing, unexpected = model.load_state_dict(torch.load(model_args.checkpoint_path))
# print(f"Missing keys: {missing}")
# print(f"Unexpected keys: {unexpected}")
trainer = Trainer(model=model, optimizer=optimizer,
criterion=loss_fn, output_dim=model_args.output_dim, scaler=None,
scheduler=None, train_dataloader=train_dl,
val_dataloader=val_dl, device=local_rank,
exp_num=datetime_dir, log_path=data_args.log_dir,
range_update=None,
accumulation_step=1, max_iter=np.inf,
exp_name=f"frugal_kan_{exp_num}")
fit_res = trainer.fit(num_epochs=100, device=local_rank,
early_stopping=10, only_p=False, best='loss', conf=True)
output_filename = f'{data_args.log_dir}/{datetime_dir}/{model_name}_frugal_{exp_num}.json'
with open(output_filename, "w") as f:
json.dump(fit_res, f, indent=2)
preds, tru, acc = trainer.predict(test_dl, local_rank)
print(f"Accuracy: {acc}")
|