File size: 8,034 Bytes
2f54ec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import torch.nn
from torch.utils.data import DataLoader
from utils.data import FFTDataset, SplitDataset, AudioINRDataset
from datasets import load_dataset
from utils.train import Trainer, INRTrainer
from utils.models import MultiGraph, ImplicitEncoder
from omegaconf import OmegaConf

# from .utils.models import CNNKan, KanEncoder
from utils.inr import INR
from utils.data_utils import *
from huggingface_hub import login
import yaml
import datetime
import json
import numpy as np
from tqdm import tqdm
import matplotlib.pyplot as plt
from scipy.signal import savgol_filter as savgol
from utils.kan import FasterKAN
from utils.relational_transformer import RelationalTransformer
from collections import OrderedDict
def plot_results(dims, i, data, losses, pred_values):
    data = savgol(data.cpu().detach().numpy(), window_length=250, polyorder=1)
    pred_values = pred_values.transpose(-1, -2).unflatten(-1, data.shape[-2:]).squeeze(0).cpu().detach().numpy()
    pred_values = (pred_values - np.min(pred_values)) / (np.max(pred_values) - np.min(pred_values))
    data = (data - np.min(data)) / (np.max(data) - np.min(data))
    plt.plot(data.squeeze())
    plt.plot(pred_values.squeeze())
    # axes[0].set_title('Original')
    # axes[1].set_title('Reconstruction')
    plt.show()
    # plt.plot(np.arange(len(losses)), losses)
    # plt.xlabel('Iteration')
    # plt.ylabel('Reconstruction MSE Error')
    # plt.show()

# local_rank = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
current_date = datetime.date.today().strftime("%Y-%m-%d")
datetime_dir = f"frugal_{current_date}"
args_dir = 'utils/config.yaml'
data_args = Container(**yaml.safe_load(open(args_dir, 'r'))['Data'])
exp_num = data_args.exp_num
model_name = data_args.model_name
rt_args = Container(**yaml.safe_load(open(args_dir, 'r'))['RelationalTransformer'])
cnn_args = Container(**yaml.safe_load(open(args_dir, 'r'))['CNNEncoder_f'])
conformer_args = Container(**yaml.safe_load(open(args_dir, 'r'))['Conformer'])
kan_args = Container(**yaml.safe_load(open(args_dir, 'r'))['KAN_INR'])
inr_args = Container(**yaml.safe_load(open(args_dir, 'r'))['INR'])
if not os.path.exists(f"{data_args.log_dir}/{datetime_dir}"):
    os.makedirs(f"{data_args.log_dir}/{datetime_dir}")

with open("../../logs/token.txt", "r") as f:
    api_key = f.read()

# local_rank, world_size, gpus_per_node = setup()
local_rank = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
login(api_key)
dataset = load_dataset("rfcx/frugalai", streaming=True)

train_ds = SplitDataset(FFTDataset(dataset["train"]), is_train=True)

train_dl = DataLoader(train_ds, batch_size=data_args.batch_size)

val_ds = SplitDataset(FFTDataset(dataset["train"]), is_train=False)

val_dl = DataLoader(val_ds, batch_size=data_args.batch_size)

test_ds = AudioINRDataset(FFTDataset(dataset["test"]))
test_dl = DataLoader(test_ds, batch_size=data_args.batch_size)

# for i, batch in enumerate(train_ds):
#     fft_phase, fft_mag, audio = batch['audio']['fft_phase'], batch['audio']['fft_mag'], batch['audio']['array']
#     label = batch['label']
#     fig, axes = plt.subplots(nrows=1, ncols=3)
#     axes = axes.flatten()
#     axes[0].plot(fft_phase)
#     axes[1].plot(fft_mag)
#     axes[2].plot(audio)
#     fig.suptitle(label)
#     plt.tight_layout()
#     plt.show()
#     if i > 20:
#         break
# model = DualEncoder(model_args, model_args_f, conformer_args)
# model = FasterKAN([18000,64,64,16,1])
# model = INR(in_features=1)
# model.kan.speed()
# model = KanEncoder(kan_args.get_dict())
# model = model.to(local_rank)

# state_dict = torch.load(data_args.checkpoint_path, map_location=torch.device('cpu'))
# new_state_dict = OrderedDict()
# for key, value in state_dict.items():
#     if key.startswith('module.'):
#         key = key[7:]
#     new_state_dict[key] = value
# missing, unexpected = model.load_state_dict(new_state_dict)

# model = DDP(model, device_ids=[local_rank], output_device=local_rank)
# num_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
# print(f"Number of parameters: {num_params}")
#
# optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
# total_steps = int(data_args.num_epochs) * 1000
# scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer,
#                                                        T_max=total_steps,
#                                                        eta_min=float((5e-4) / 10))

loss_fn = torch.nn.BCEWithLogitsLoss()
inr_criterion = torch.nn.MSELoss()

# for i, batch in enumerate(train_ds):
#     coords, fft, audio = batch['audio']['coords'], batch['audio']['fft_mag'], batch['audio']['array']
#     coords = coords.to(local_rank)
#     fft = fft.to(local_rank)
#     audio = audio.to(local_rank)
#     values = torch.cat((audio.unsqueeze(-1), fft.unsqueeze(-1)), dim=-1)
#     # model = INR(hidden_features=128, n_layers=3,
#     #             in_features=1,
#     #             out_features=1).to(local_rank)
#     model = FasterKAN(**kan_args.get_dict()).to(local_rank)
#     optimizer = torch.optim.Adam([{'params': model.parameters()}], lr=1e-3)
#     pbar = tqdm(range(200))
#     losses = []
#     print(coords.shape)
#     for t in pbar:
#         optimizer.zero_grad()
#         pred_values = model(coords.to(local_rank)).float()
#         loss = inr_criterion(pred_values, values)
#         loss.backward()
#         optimizer.step()
#         pbar.set_description(f'loss: {loss.item()}')
#         losses.append(loss.item())
#     state_dict = model.state_dict()
#     torch.save(state_dict, 'test')
#     # print(f'Sample {i+offset} label {label} saved in {inr_path}')
#     plot_results(1, i, fft, losses, pred_values)
# #
# exit()


# missing, unexpected = model.load_state_dict(torch.load(model_args.checkpoint_path))
# print(f"Missing keys: {missing}")
# print(f"Unexpected keys: {unexpected}")
layer_layout = [inr_args.in_features] + [inr_args.hidden_features for _ in range(inr_args.n_layers)]  + [inr_args.out_features]

graph_constructor = OmegaConf.create(
        {
            "_target_": "utils.graph_constructor.GraphConstructor",
            "_recursive_": False,
            "_convert_": "all",
            "d_in": 1,
            "d_edge_in": 1,
            "zero_out_bias": False,
            "zero_out_weights": False,
            "sin_emb": True,
            "sin_emb_dim": rt_args.d_node,
            "use_pos_embed": False,
            "input_layers": 1,
            "inp_factor": 1,
            "num_probe_features": 0,
            "inr_model": None,
            "stats": None,
            "sparsify": False,
            'sym_edges': False,
        }
    )

rt_model = RelationalTransformer(layer_layout=layer_layout, graph_constructor=graph_constructor,
                              **rt_args.get_dict()).to(local_rank)
rt_model.proj_out= torch.nn.Identity()
multi_graph = MultiGraph(rt_model, cnn_args)
implicit_net = INR(**inr_args.get_dict())
model = ImplicitEncoder(implicit_net, multi_graph).to(local_rank)
num_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f"Number of parameters: {num_parameters}")
optimizer = torch.optim.Adam([{'params': model.parameters()}], lr=1e-3)
trainer = Trainer(model=model, optimizer=optimizer,
                  criterion=loss_fn, output_dim=1, scaler=None,
                  scheduler=None, train_dataloader=train_dl,
                  val_dataloader=val_dl, device=local_rank,
                  exp_num=datetime_dir, log_path=data_args.log_dir,
                  range_update=None,
                  accumulation_step=1, max_iter=100,
                  exp_name=f"frugal_kan_{exp_num}")
fit_res = trainer.fit(num_epochs=100, device=local_rank,
                      early_stopping=10, only_p=False, best='loss', conf=True)
output_filename = f'{data_args.log_dir}/{datetime_dir}/{model_name}_frugal_{exp_num}.json'
with open(output_filename, "w") as f:
    json.dump(fit_res, f, indent=2)
preds, acc = trainer.predict(test_dl, local_rank)
print(f"Accuracy: {acc}")