Spaces:
Sleeping
Sleeping
Upload utils_qa.py
Browse files- utils_qa.py +443 -0
utils_qa.py
ADDED
|
@@ -0,0 +1,443 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2020 The HuggingFace Team All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
"""
|
| 15 |
+
Post-processing utilities for question answering.
|
| 16 |
+
"""
|
| 17 |
+
|
| 18 |
+
import collections
|
| 19 |
+
import json
|
| 20 |
+
import logging
|
| 21 |
+
import os
|
| 22 |
+
from typing import Optional
|
| 23 |
+
|
| 24 |
+
import numpy as np
|
| 25 |
+
from tqdm.auto import tqdm
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
logger = logging.getLogger(__name__)
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def postprocess_qa_predictions(
|
| 32 |
+
examples,
|
| 33 |
+
features,
|
| 34 |
+
predictions: tuple[np.ndarray, np.ndarray],
|
| 35 |
+
version_2_with_negative: bool = False,
|
| 36 |
+
n_best_size: int = 20,
|
| 37 |
+
max_answer_length: int = 30,
|
| 38 |
+
null_score_diff_threshold: float = 0.0,
|
| 39 |
+
output_dir: Optional[str] = None,
|
| 40 |
+
prefix: Optional[str] = None,
|
| 41 |
+
log_level: Optional[int] = logging.WARNING,
|
| 42 |
+
):
|
| 43 |
+
"""
|
| 44 |
+
Post-processes the predictions of a question-answering model to convert them to answers that are substrings of the
|
| 45 |
+
original contexts. This is the base postprocessing functions for models that only return start and end logits.
|
| 46 |
+
|
| 47 |
+
Args:
|
| 48 |
+
examples: The non-preprocessed dataset (see the main script for more information).
|
| 49 |
+
features: The processed dataset (see the main script for more information).
|
| 50 |
+
predictions (:obj:`Tuple[np.ndarray, np.ndarray]`):
|
| 51 |
+
The predictions of the model: two arrays containing the start logits and the end logits respectively. Its
|
| 52 |
+
first dimension must match the number of elements of :obj:`features`.
|
| 53 |
+
version_2_with_negative (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
| 54 |
+
Whether or not the underlying dataset contains examples with no answers.
|
| 55 |
+
n_best_size (:obj:`int`, `optional`, defaults to 20):
|
| 56 |
+
The total number of n-best predictions to generate when looking for an answer.
|
| 57 |
+
max_answer_length (:obj:`int`, `optional`, defaults to 30):
|
| 58 |
+
The maximum length of an answer that can be generated. This is needed because the start and end predictions
|
| 59 |
+
are not conditioned on one another.
|
| 60 |
+
null_score_diff_threshold (:obj:`float`, `optional`, defaults to 0):
|
| 61 |
+
The threshold used to select the null answer: if the best answer has a score that is less than the score of
|
| 62 |
+
the null answer minus this threshold, the null answer is selected for this example (note that the score of
|
| 63 |
+
the null answer for an example giving several features is the minimum of the scores for the null answer on
|
| 64 |
+
each feature: all features must be aligned on the fact they `want` to predict a null answer).
|
| 65 |
+
|
| 66 |
+
Only useful when :obj:`version_2_with_negative` is :obj:`True`.
|
| 67 |
+
output_dir (:obj:`str`, `optional`):
|
| 68 |
+
If provided, the dictionaries of predictions, n_best predictions (with their scores and logits) and, if
|
| 69 |
+
:obj:`version_2_with_negative=True`, the dictionary of the scores differences between best and null
|
| 70 |
+
answers, are saved in `output_dir`.
|
| 71 |
+
prefix (:obj:`str`, `optional`):
|
| 72 |
+
If provided, the dictionaries mentioned above are saved with `prefix` added to their names.
|
| 73 |
+
log_level (:obj:`int`, `optional`, defaults to ``logging.WARNING``):
|
| 74 |
+
``logging`` log level (e.g., ``logging.WARNING``)
|
| 75 |
+
"""
|
| 76 |
+
if len(predictions) != 2:
|
| 77 |
+
raise ValueError("`predictions` should be a tuple with two elements (start_logits, end_logits).")
|
| 78 |
+
all_start_logits, all_end_logits = predictions
|
| 79 |
+
|
| 80 |
+
if len(predictions[0]) != len(features):
|
| 81 |
+
raise ValueError(f"Got {len(predictions[0])} predictions and {len(features)} features.")
|
| 82 |
+
|
| 83 |
+
# Build a map example to its corresponding features.
|
| 84 |
+
example_id_to_index = {k: i for i, k in enumerate(examples["id"])}
|
| 85 |
+
features_per_example = collections.defaultdict(list)
|
| 86 |
+
for i, feature in enumerate(features):
|
| 87 |
+
features_per_example[example_id_to_index[feature["example_id"]]].append(i)
|
| 88 |
+
|
| 89 |
+
# The dictionaries we have to fill.
|
| 90 |
+
all_predictions = collections.OrderedDict()
|
| 91 |
+
all_nbest_json = collections.OrderedDict()
|
| 92 |
+
if version_2_with_negative:
|
| 93 |
+
scores_diff_json = collections.OrderedDict()
|
| 94 |
+
|
| 95 |
+
# Logging.
|
| 96 |
+
logger.setLevel(log_level)
|
| 97 |
+
logger.info(f"Post-processing {len(examples)} example predictions split into {len(features)} features.")
|
| 98 |
+
|
| 99 |
+
# Let's loop over all the examples!
|
| 100 |
+
for example_index, example in enumerate(tqdm(examples)):
|
| 101 |
+
# Those are the indices of the features associated to the current example.
|
| 102 |
+
feature_indices = features_per_example[example_index]
|
| 103 |
+
|
| 104 |
+
min_null_prediction = None
|
| 105 |
+
prelim_predictions = []
|
| 106 |
+
|
| 107 |
+
# Looping through all the features associated to the current example.
|
| 108 |
+
for feature_index in feature_indices:
|
| 109 |
+
# We grab the predictions of the model for this feature.
|
| 110 |
+
start_logits = all_start_logits[feature_index]
|
| 111 |
+
end_logits = all_end_logits[feature_index]
|
| 112 |
+
# This is what will allow us to map some the positions in our logits to span of texts in the original
|
| 113 |
+
# context.
|
| 114 |
+
offset_mapping = features[feature_index]["offset_mapping"]
|
| 115 |
+
# Optional `token_is_max_context`, if provided we will remove answers that do not have the maximum context
|
| 116 |
+
# available in the current feature.
|
| 117 |
+
token_is_max_context = features[feature_index].get("token_is_max_context", None)
|
| 118 |
+
|
| 119 |
+
# Update minimum null prediction.
|
| 120 |
+
feature_null_score = start_logits[0] + end_logits[0]
|
| 121 |
+
if min_null_prediction is None or min_null_prediction["score"] > feature_null_score:
|
| 122 |
+
min_null_prediction = {
|
| 123 |
+
"offsets": (0, 0),
|
| 124 |
+
"score": feature_null_score,
|
| 125 |
+
"start_logit": start_logits[0],
|
| 126 |
+
"end_logit": end_logits[0],
|
| 127 |
+
}
|
| 128 |
+
|
| 129 |
+
# Go through all possibilities for the `n_best_size` greater start and end logits.
|
| 130 |
+
start_indexes = np.argsort(start_logits)[-1 : -n_best_size - 1 : -1].tolist()
|
| 131 |
+
end_indexes = np.argsort(end_logits)[-1 : -n_best_size - 1 : -1].tolist()
|
| 132 |
+
for start_index in start_indexes:
|
| 133 |
+
for end_index in end_indexes:
|
| 134 |
+
# Don't consider out-of-scope answers, either because the indices are out of bounds or correspond
|
| 135 |
+
# to part of the input_ids that are not in the context.
|
| 136 |
+
if (
|
| 137 |
+
start_index >= len(offset_mapping)
|
| 138 |
+
or end_index >= len(offset_mapping)
|
| 139 |
+
or offset_mapping[start_index] is None
|
| 140 |
+
or len(offset_mapping[start_index]) < 2
|
| 141 |
+
or offset_mapping[end_index] is None
|
| 142 |
+
or len(offset_mapping[end_index]) < 2
|
| 143 |
+
):
|
| 144 |
+
continue
|
| 145 |
+
# Don't consider answers with a length that is either < 0 or > max_answer_length.
|
| 146 |
+
if end_index < start_index or end_index - start_index + 1 > max_answer_length:
|
| 147 |
+
continue
|
| 148 |
+
# Don't consider answer that don't have the maximum context available (if such information is
|
| 149 |
+
# provided).
|
| 150 |
+
if token_is_max_context is not None and not token_is_max_context.get(str(start_index), False):
|
| 151 |
+
continue
|
| 152 |
+
|
| 153 |
+
prelim_predictions.append(
|
| 154 |
+
{
|
| 155 |
+
"offsets": (offset_mapping[start_index][0], offset_mapping[end_index][1]),
|
| 156 |
+
"score": start_logits[start_index] + end_logits[end_index],
|
| 157 |
+
"start_logit": start_logits[start_index],
|
| 158 |
+
"end_logit": end_logits[end_index],
|
| 159 |
+
}
|
| 160 |
+
)
|
| 161 |
+
if version_2_with_negative and min_null_prediction is not None:
|
| 162 |
+
# Add the minimum null prediction
|
| 163 |
+
prelim_predictions.append(min_null_prediction)
|
| 164 |
+
null_score = min_null_prediction["score"]
|
| 165 |
+
|
| 166 |
+
# Only keep the best `n_best_size` predictions.
|
| 167 |
+
predictions = sorted(prelim_predictions, key=lambda x: x["score"], reverse=True)[:n_best_size]
|
| 168 |
+
|
| 169 |
+
# Add back the minimum null prediction if it was removed because of its low score.
|
| 170 |
+
if (
|
| 171 |
+
version_2_with_negative
|
| 172 |
+
and min_null_prediction is not None
|
| 173 |
+
and not any(p["offsets"] == (0, 0) for p in predictions)
|
| 174 |
+
):
|
| 175 |
+
predictions.append(min_null_prediction)
|
| 176 |
+
|
| 177 |
+
# Use the offsets to gather the answer text in the original context.
|
| 178 |
+
context = example["context"]
|
| 179 |
+
for pred in predictions:
|
| 180 |
+
offsets = pred.pop("offsets")
|
| 181 |
+
pred["text"] = context[offsets[0] : offsets[1]]
|
| 182 |
+
|
| 183 |
+
# In the very rare edge case we have not a single non-null prediction, we create a fake prediction to avoid
|
| 184 |
+
# failure.
|
| 185 |
+
if len(predictions) == 0 or (len(predictions) == 1 and predictions[0]["text"] == ""):
|
| 186 |
+
predictions.insert(0, {"text": "empty", "start_logit": 0.0, "end_logit": 0.0, "score": 0.0})
|
| 187 |
+
|
| 188 |
+
# Compute the softmax of all scores (we do it with numpy to stay independent from torch/tf in this file, using
|
| 189 |
+
# the LogSumExp trick).
|
| 190 |
+
scores = np.array([pred.pop("score") for pred in predictions])
|
| 191 |
+
exp_scores = np.exp(scores - np.max(scores))
|
| 192 |
+
probs = exp_scores / exp_scores.sum()
|
| 193 |
+
|
| 194 |
+
# Include the probabilities in our predictions.
|
| 195 |
+
for prob, pred in zip(probs, predictions):
|
| 196 |
+
pred["probability"] = prob
|
| 197 |
+
|
| 198 |
+
# Pick the best prediction. If the null answer is not possible, this is easy.
|
| 199 |
+
if not version_2_with_negative:
|
| 200 |
+
all_predictions[example["id"]] = predictions[0]["text"]
|
| 201 |
+
else:
|
| 202 |
+
# Otherwise we first need to find the best non-empty prediction.
|
| 203 |
+
i = 0
|
| 204 |
+
while predictions[i]["text"] == "":
|
| 205 |
+
i += 1
|
| 206 |
+
best_non_null_pred = predictions[i]
|
| 207 |
+
|
| 208 |
+
# Then we compare to the null prediction using the threshold.
|
| 209 |
+
score_diff = null_score - best_non_null_pred["start_logit"] - best_non_null_pred["end_logit"]
|
| 210 |
+
scores_diff_json[example["id"]] = float(score_diff) # To be JSON-serializable.
|
| 211 |
+
if score_diff > null_score_diff_threshold:
|
| 212 |
+
all_predictions[example["id"]] = ""
|
| 213 |
+
else:
|
| 214 |
+
all_predictions[example["id"]] = best_non_null_pred["text"]
|
| 215 |
+
|
| 216 |
+
# Make `predictions` JSON-serializable by casting np.float back to float.
|
| 217 |
+
all_nbest_json[example["id"]] = [
|
| 218 |
+
{k: (float(v) if isinstance(v, (np.float16, np.float32, np.float64)) else v) for k, v in pred.items()}
|
| 219 |
+
for pred in predictions
|
| 220 |
+
]
|
| 221 |
+
|
| 222 |
+
# If we have an output_dir, let's save all those dicts.
|
| 223 |
+
if output_dir is not None:
|
| 224 |
+
if not os.path.isdir(output_dir):
|
| 225 |
+
raise OSError(f"{output_dir} is not a directory.")
|
| 226 |
+
|
| 227 |
+
prediction_file = os.path.join(
|
| 228 |
+
output_dir, "predictions.json" if prefix is None else f"{prefix}_predictions.json"
|
| 229 |
+
)
|
| 230 |
+
nbest_file = os.path.join(
|
| 231 |
+
output_dir, "nbest_predictions.json" if prefix is None else f"{prefix}_nbest_predictions.json"
|
| 232 |
+
)
|
| 233 |
+
if version_2_with_negative:
|
| 234 |
+
null_odds_file = os.path.join(
|
| 235 |
+
output_dir, "null_odds.json" if prefix is None else f"{prefix}_null_odds.json"
|
| 236 |
+
)
|
| 237 |
+
|
| 238 |
+
logger.info(f"Saving predictions to {prediction_file}.")
|
| 239 |
+
with open(prediction_file, "w") as writer:
|
| 240 |
+
writer.write(json.dumps(all_predictions, indent=4) + "\n")
|
| 241 |
+
logger.info(f"Saving nbest_preds to {nbest_file}.")
|
| 242 |
+
with open(nbest_file, "w") as writer:
|
| 243 |
+
writer.write(json.dumps(all_nbest_json, indent=4) + "\n")
|
| 244 |
+
if version_2_with_negative:
|
| 245 |
+
logger.info(f"Saving null_odds to {null_odds_file}.")
|
| 246 |
+
with open(null_odds_file, "w") as writer:
|
| 247 |
+
writer.write(json.dumps(scores_diff_json, indent=4) + "\n")
|
| 248 |
+
|
| 249 |
+
return all_predictions
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
def postprocess_qa_predictions_with_beam_search(
|
| 253 |
+
examples,
|
| 254 |
+
features,
|
| 255 |
+
predictions: tuple[np.ndarray, np.ndarray],
|
| 256 |
+
version_2_with_negative: bool = False,
|
| 257 |
+
n_best_size: int = 20,
|
| 258 |
+
max_answer_length: int = 30,
|
| 259 |
+
start_n_top: int = 5,
|
| 260 |
+
end_n_top: int = 5,
|
| 261 |
+
output_dir: Optional[str] = None,
|
| 262 |
+
prefix: Optional[str] = None,
|
| 263 |
+
log_level: Optional[int] = logging.WARNING,
|
| 264 |
+
):
|
| 265 |
+
"""
|
| 266 |
+
Post-processes the predictions of a question-answering model with beam search to convert them to answers that are substrings of the
|
| 267 |
+
original contexts. This is the postprocessing functions for models that return start and end logits, indices, as well as
|
| 268 |
+
cls token predictions.
|
| 269 |
+
|
| 270 |
+
Args:
|
| 271 |
+
examples: The non-preprocessed dataset (see the main script for more information).
|
| 272 |
+
features: The processed dataset (see the main script for more information).
|
| 273 |
+
predictions (:obj:`Tuple[np.ndarray, np.ndarray]`):
|
| 274 |
+
The predictions of the model: two arrays containing the start logits and the end logits respectively. Its
|
| 275 |
+
first dimension must match the number of elements of :obj:`features`.
|
| 276 |
+
version_2_with_negative (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
| 277 |
+
Whether or not the underlying dataset contains examples with no answers.
|
| 278 |
+
n_best_size (:obj:`int`, `optional`, defaults to 20):
|
| 279 |
+
The total number of n-best predictions to generate when looking for an answer.
|
| 280 |
+
max_answer_length (:obj:`int`, `optional`, defaults to 30):
|
| 281 |
+
The maximum length of an answer that can be generated. This is needed because the start and end predictions
|
| 282 |
+
are not conditioned on one another.
|
| 283 |
+
start_n_top (:obj:`int`, `optional`, defaults to 5):
|
| 284 |
+
The number of top start logits too keep when searching for the :obj:`n_best_size` predictions.
|
| 285 |
+
end_n_top (:obj:`int`, `optional`, defaults to 5):
|
| 286 |
+
The number of top end logits too keep when searching for the :obj:`n_best_size` predictions.
|
| 287 |
+
output_dir (:obj:`str`, `optional`):
|
| 288 |
+
If provided, the dictionaries of predictions, n_best predictions (with their scores and logits) and, if
|
| 289 |
+
:obj:`version_2_with_negative=True`, the dictionary of the scores differences between best and null
|
| 290 |
+
answers, are saved in `output_dir`.
|
| 291 |
+
prefix (:obj:`str`, `optional`):
|
| 292 |
+
If provided, the dictionaries mentioned above are saved with `prefix` added to their names.
|
| 293 |
+
log_level (:obj:`int`, `optional`, defaults to ``logging.WARNING``):
|
| 294 |
+
``logging`` log level (e.g., ``logging.WARNING``)
|
| 295 |
+
"""
|
| 296 |
+
if len(predictions) != 5:
|
| 297 |
+
raise ValueError("`predictions` should be a tuple with five elements.")
|
| 298 |
+
start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits = predictions
|
| 299 |
+
|
| 300 |
+
if len(predictions[0]) != len(features):
|
| 301 |
+
raise ValueError(f"Got {len(predictions[0])} predictions and {len(features)} features.")
|
| 302 |
+
|
| 303 |
+
# Build a map example to its corresponding features.
|
| 304 |
+
example_id_to_index = {k: i for i, k in enumerate(examples["id"])}
|
| 305 |
+
features_per_example = collections.defaultdict(list)
|
| 306 |
+
for i, feature in enumerate(features):
|
| 307 |
+
features_per_example[example_id_to_index[feature["example_id"]]].append(i)
|
| 308 |
+
|
| 309 |
+
# The dictionaries we have to fill.
|
| 310 |
+
all_predictions = collections.OrderedDict()
|
| 311 |
+
all_nbest_json = collections.OrderedDict()
|
| 312 |
+
scores_diff_json = collections.OrderedDict() if version_2_with_negative else None
|
| 313 |
+
|
| 314 |
+
# Logging.
|
| 315 |
+
logger.setLevel(log_level)
|
| 316 |
+
logger.info(f"Post-processing {len(examples)} example predictions split into {len(features)} features.")
|
| 317 |
+
|
| 318 |
+
# Let's loop over all the examples!
|
| 319 |
+
for example_index, example in enumerate(tqdm(examples)):
|
| 320 |
+
# Those are the indices of the features associated to the current example.
|
| 321 |
+
feature_indices = features_per_example[example_index]
|
| 322 |
+
|
| 323 |
+
min_null_score = None
|
| 324 |
+
prelim_predictions = []
|
| 325 |
+
|
| 326 |
+
# Looping through all the features associated to the current example.
|
| 327 |
+
for feature_index in feature_indices:
|
| 328 |
+
# We grab the predictions of the model for this feature.
|
| 329 |
+
start_log_prob = start_top_log_probs[feature_index]
|
| 330 |
+
start_indexes = start_top_index[feature_index]
|
| 331 |
+
end_log_prob = end_top_log_probs[feature_index]
|
| 332 |
+
end_indexes = end_top_index[feature_index]
|
| 333 |
+
feature_null_score = cls_logits[feature_index]
|
| 334 |
+
# This is what will allow us to map some the positions in our logits to span of texts in the original
|
| 335 |
+
# context.
|
| 336 |
+
offset_mapping = features[feature_index]["offset_mapping"]
|
| 337 |
+
# Optional `token_is_max_context`, if provided we will remove answers that do not have the maximum context
|
| 338 |
+
# available in the current feature.
|
| 339 |
+
token_is_max_context = features[feature_index].get("token_is_max_context", None)
|
| 340 |
+
|
| 341 |
+
# Update minimum null prediction
|
| 342 |
+
if min_null_score is None or feature_null_score < min_null_score:
|
| 343 |
+
min_null_score = feature_null_score
|
| 344 |
+
|
| 345 |
+
# Go through all possibilities for the `n_start_top`/`n_end_top` greater start and end logits.
|
| 346 |
+
for i in range(start_n_top):
|
| 347 |
+
for j in range(end_n_top):
|
| 348 |
+
start_index = int(start_indexes[i])
|
| 349 |
+
j_index = i * end_n_top + j
|
| 350 |
+
end_index = int(end_indexes[j_index])
|
| 351 |
+
# Don't consider out-of-scope answers (last part of the test should be unnecessary because of the
|
| 352 |
+
# p_mask but let's not take any risk)
|
| 353 |
+
if (
|
| 354 |
+
start_index >= len(offset_mapping)
|
| 355 |
+
or end_index >= len(offset_mapping)
|
| 356 |
+
or offset_mapping[start_index] is None
|
| 357 |
+
or len(offset_mapping[start_index]) < 2
|
| 358 |
+
or offset_mapping[end_index] is None
|
| 359 |
+
or len(offset_mapping[end_index]) < 2
|
| 360 |
+
):
|
| 361 |
+
continue
|
| 362 |
+
|
| 363 |
+
# Don't consider answers with a length negative or > max_answer_length.
|
| 364 |
+
if end_index < start_index or end_index - start_index + 1 > max_answer_length:
|
| 365 |
+
continue
|
| 366 |
+
# Don't consider answer that don't have the maximum context available (if such information is
|
| 367 |
+
# provided).
|
| 368 |
+
if token_is_max_context is not None and not token_is_max_context.get(str(start_index), False):
|
| 369 |
+
continue
|
| 370 |
+
prelim_predictions.append(
|
| 371 |
+
{
|
| 372 |
+
"offsets": (offset_mapping[start_index][0], offset_mapping[end_index][1]),
|
| 373 |
+
"score": start_log_prob[i] + end_log_prob[j_index],
|
| 374 |
+
"start_log_prob": start_log_prob[i],
|
| 375 |
+
"end_log_prob": end_log_prob[j_index],
|
| 376 |
+
}
|
| 377 |
+
)
|
| 378 |
+
|
| 379 |
+
# Only keep the best `n_best_size` predictions.
|
| 380 |
+
predictions = sorted(prelim_predictions, key=lambda x: x["score"], reverse=True)[:n_best_size]
|
| 381 |
+
|
| 382 |
+
# Use the offsets to gather the answer text in the original context.
|
| 383 |
+
context = example["context"]
|
| 384 |
+
for pred in predictions:
|
| 385 |
+
offsets = pred.pop("offsets")
|
| 386 |
+
pred["text"] = context[offsets[0] : offsets[1]]
|
| 387 |
+
|
| 388 |
+
# In the very rare edge case we have not a single non-null prediction, we create a fake prediction to avoid
|
| 389 |
+
# failure.
|
| 390 |
+
if len(predictions) == 0:
|
| 391 |
+
# Without predictions min_null_score is going to be None and None will cause an exception later
|
| 392 |
+
min_null_score = -2e-6
|
| 393 |
+
predictions.insert(0, {"text": "", "start_logit": -1e-6, "end_logit": -1e-6, "score": min_null_score})
|
| 394 |
+
|
| 395 |
+
# Compute the softmax of all scores (we do it with numpy to stay independent from torch/tf in this file, using
|
| 396 |
+
# the LogSumExp trick).
|
| 397 |
+
scores = np.array([pred.pop("score") for pred in predictions])
|
| 398 |
+
exp_scores = np.exp(scores - np.max(scores))
|
| 399 |
+
probs = exp_scores / exp_scores.sum()
|
| 400 |
+
|
| 401 |
+
# Include the probabilities in our predictions.
|
| 402 |
+
for prob, pred in zip(probs, predictions):
|
| 403 |
+
pred["probability"] = prob
|
| 404 |
+
|
| 405 |
+
# Pick the best prediction and set the probability for the null answer.
|
| 406 |
+
all_predictions[example["id"]] = predictions[0]["text"]
|
| 407 |
+
if version_2_with_negative:
|
| 408 |
+
scores_diff_json[example["id"]] = float(min_null_score)
|
| 409 |
+
|
| 410 |
+
# Make `predictions` JSON-serializable by casting np.float back to float.
|
| 411 |
+
all_nbest_json[example["id"]] = [
|
| 412 |
+
{k: (float(v) if isinstance(v, (np.float16, np.float32, np.float64)) else v) for k, v in pred.items()}
|
| 413 |
+
for pred in predictions
|
| 414 |
+
]
|
| 415 |
+
|
| 416 |
+
# If we have an output_dir, let's save all those dicts.
|
| 417 |
+
if output_dir is not None:
|
| 418 |
+
if not os.path.isdir(output_dir):
|
| 419 |
+
raise OSError(f"{output_dir} is not a directory.")
|
| 420 |
+
|
| 421 |
+
prediction_file = os.path.join(
|
| 422 |
+
output_dir, "predictions.json" if prefix is None else f"{prefix}_predictions.json"
|
| 423 |
+
)
|
| 424 |
+
nbest_file = os.path.join(
|
| 425 |
+
output_dir, "nbest_predictions.json" if prefix is None else f"{prefix}_nbest_predictions.json"
|
| 426 |
+
)
|
| 427 |
+
if version_2_with_negative:
|
| 428 |
+
null_odds_file = os.path.join(
|
| 429 |
+
output_dir, "null_odds.json" if prefix is None else f"{prefix}_null_odds.json"
|
| 430 |
+
)
|
| 431 |
+
|
| 432 |
+
logger.info(f"Saving predictions to {prediction_file}.")
|
| 433 |
+
with open(prediction_file, "w") as writer:
|
| 434 |
+
writer.write(json.dumps(all_predictions, indent=4) + "\n")
|
| 435 |
+
logger.info(f"Saving nbest_preds to {nbest_file}.")
|
| 436 |
+
with open(nbest_file, "w") as writer:
|
| 437 |
+
writer.write(json.dumps(all_nbest_json, indent=4) + "\n")
|
| 438 |
+
if version_2_with_negative:
|
| 439 |
+
logger.info(f"Saving null_odds to {null_odds_file}.")
|
| 440 |
+
with open(null_odds_file, "w") as writer:
|
| 441 |
+
writer.write(json.dumps(scores_diff_json, indent=4) + "\n")
|
| 442 |
+
|
| 443 |
+
return all_predictions, scores_diff_json
|