Spaces:
Running
on
L40S
Running
on
L40S
updated
Browse files
app.py
CHANGED
@@ -6,25 +6,11 @@ import random
|
|
6 |
import os
|
7 |
import tempfile
|
8 |
import soundfile as sf
|
9 |
-
import time
|
10 |
|
11 |
os.environ['ELASTIC_LOG_LEVEL'] = 'DEBUG'
|
12 |
from transformers import AutoProcessor, pipeline
|
13 |
from elastic_models.transformers import MusicgenForConditionalGeneration
|
14 |
|
15 |
-
MODEL_CONFIG = {
|
16 |
-
'cost_per_hour': 1.8, # $1.8 per hour on L40S
|
17 |
-
'cost_savings_1000h': {
|
18 |
-
'savings_dollars': 8.4, # $8.4 saved per 1000 hours
|
19 |
-
'savings_percent': 74.9, # 74.9% savings
|
20 |
-
'compressed_cost': 2.8, # $2.8 for compressed
|
21 |
-
'original_cost': 11.3, # $11.3 for original
|
22 |
-
},
|
23 |
-
'batch_mode': False
|
24 |
-
}
|
25 |
-
|
26 |
-
original_time_cache = {"original_time": 22.57}
|
27 |
-
|
28 |
|
29 |
def set_seed(seed: int = 42):
|
30 |
random.seed(seed)
|
@@ -37,6 +23,7 @@ def set_seed(seed: int = 42):
|
|
37 |
|
38 |
|
39 |
def cleanup_gpu():
|
|
|
40 |
if torch.cuda.is_available():
|
41 |
torch.cuda.empty_cache()
|
42 |
torch.cuda.synchronize()
|
@@ -44,6 +31,7 @@ def cleanup_gpu():
|
|
44 |
|
45 |
|
46 |
def cleanup_temp_files():
|
|
|
47 |
import glob
|
48 |
import time
|
49 |
temp_dir = tempfile.gettempdir()
|
@@ -59,8 +47,6 @@ def cleanup_temp_files():
|
|
59 |
|
60 |
_generator = None
|
61 |
_processor = None
|
62 |
-
_original_generator = None
|
63 |
-
_original_processor = None
|
64 |
|
65 |
|
66 |
def load_model():
|
@@ -102,43 +88,6 @@ def load_model():
|
|
102 |
return _generator, _processor
|
103 |
|
104 |
|
105 |
-
def load_original_model():
|
106 |
-
global _original_generator, _original_processor
|
107 |
-
|
108 |
-
if _original_generator is None:
|
109 |
-
print("[ORIGINAL MODEL] Starting original model initialization...")
|
110 |
-
cleanup_gpu()
|
111 |
-
|
112 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
113 |
-
print(f"[ORIGINAL MODEL] Using device: {device}")
|
114 |
-
|
115 |
-
print("[ORIGINAL MODEL] Loading processor...")
|
116 |
-
_original_processor = AutoProcessor.from_pretrained(
|
117 |
-
"facebook/musicgen-large"
|
118 |
-
)
|
119 |
-
from transformers import MusicgenForConditionalGeneration as HFMusicgenForConditionalGeneration
|
120 |
-
|
121 |
-
print("[ORIGINAL MODEL] Loading original model...")
|
122 |
-
model = HFMusicgenForConditionalGeneration.from_pretrained(
|
123 |
-
"facebook/musicgen-large",
|
124 |
-
torch_dtype=torch.float16,
|
125 |
-
).to(device)
|
126 |
-
|
127 |
-
model.eval()
|
128 |
-
|
129 |
-
print("[ORIGINAL MODEL] Creating pipeline...")
|
130 |
-
_original_generator = pipeline(
|
131 |
-
task="text-to-audio",
|
132 |
-
model=model,
|
133 |
-
tokenizer=_original_processor.tokenizer,
|
134 |
-
device=device,
|
135 |
-
)
|
136 |
-
|
137 |
-
print("[ORIGINAL MODEL] Original model initialization completed successfully")
|
138 |
-
|
139 |
-
return _original_generator, _original_processor
|
140 |
-
|
141 |
-
|
142 |
def calculate_max_tokens(duration_seconds):
|
143 |
token_rate = 50
|
144 |
max_new_tokens = int(duration_seconds * token_rate)
|
@@ -211,9 +160,9 @@ def generate_music(text_prompt, duration=10, guidance_scale=3.0):
|
|
211 |
|
212 |
max_val = np.max(np.abs(audio_data))
|
213 |
if max_val > 0:
|
214 |
-
audio_data = audio_data / max_val * 0.95
|
215 |
|
216 |
-
audio_data = (audio_data * 32767).astype(np.int16)
|
217 |
|
218 |
print(f"[GENERATION] Final audio shape: {audio_data.shape}")
|
219 |
print(f"[GENERATION] Audio range: [{np.min(audio_data)}, {np.max(audio_data)}]")
|
@@ -231,7 +180,6 @@ def generate_music(text_prompt, duration=10, guidance_scale=3.0):
|
|
231 |
print(f"[GENERATION] Audio saved to: {temp_path}")
|
232 |
print(f"[GENERATION] File size: {file_size} bytes")
|
233 |
|
234 |
-
# Try returning numpy format instead
|
235 |
print(f"[GENERATION] Returning numpy tuple: ({sample_rate}, audio_array)")
|
236 |
return (sample_rate, audio_data)
|
237 |
else:
|
@@ -244,194 +192,56 @@ def generate_music(text_prompt, duration=10, guidance_scale=3.0):
|
|
244 |
return None
|
245 |
|
246 |
|
247 |
-
|
248 |
-
hours = generation_time_seconds / 3600
|
249 |
-
cost_per_hour = MODEL_CONFIG['cost_per_hour']
|
250 |
-
return hours * cost_per_hour
|
251 |
-
|
252 |
-
|
253 |
-
def calculate_cost_savings(compressed_time, original_time):
|
254 |
-
compressed_cost = calculate_generation_cost(compressed_time, 'S')
|
255 |
-
original_cost = calculate_generation_cost(original_time, 'original')
|
256 |
-
savings = original_cost - compressed_cost
|
257 |
-
savings_percent = (savings / original_cost * 100) if original_cost > 0 else 0
|
258 |
-
return {
|
259 |
-
'compressed_cost': compressed_cost,
|
260 |
-
'original_cost': original_cost,
|
261 |
-
'savings': savings,
|
262 |
-
'savings_percent': savings_percent
|
263 |
-
}
|
264 |
-
|
265 |
-
|
266 |
-
def get_fixed_savings_message():
|
267 |
-
config = MODEL_CONFIG['cost_savings_1000h']
|
268 |
-
return f"💰 **Cost Savings on L40S (1000h)**: ${config['savings_dollars']:.1f}" \
|
269 |
-
f" ({config['savings_percent']:.1f}%) - Compressed: ${config['compressed_cost']:.1f} " \
|
270 |
-
f"vs Original: ${config['original_cost']:.1f}"
|
271 |
-
|
272 |
-
|
273 |
-
def get_cache_key(prompt, duration, guidance_scale):
|
274 |
-
return f"{hash(prompt)}_{duration}_{guidance_scale}"
|
275 |
-
|
276 |
-
|
277 |
-
def generate_music_batch(text_prompt, duration=10, guidance_scale=3.0, model_mode="compressed"):
|
278 |
-
try:
|
279 |
-
|
280 |
-
generator, processor = load_model()
|
281 |
-
model_name = "Compressed (S)"
|
282 |
-
|
283 |
-
print(f"[GENERATION] Starting generation using {model_name} model...")
|
284 |
-
print(f"[GENERATION] Prompt: '{text_prompt}'")
|
285 |
-
print(f"[GENERATION] Duration: {duration}s")
|
286 |
-
print(f"[GENERATION] Guidance scale: {guidance_scale}")
|
287 |
-
print(f"[GENERATION] Batch mode: {MODEL_CONFIG['batch_mode']}")
|
288 |
-
|
289 |
-
cleanup_gpu()
|
290 |
-
set_seed(42)
|
291 |
-
print(f"[GENERATION] Using seed: 42")
|
292 |
-
|
293 |
-
max_new_tokens = calculate_max_tokens(duration)
|
294 |
-
|
295 |
-
generation_params = {
|
296 |
-
'do_sample': True,
|
297 |
-
'guidance_scale': guidance_scale,
|
298 |
-
'max_new_tokens': max_new_tokens,
|
299 |
-
'min_new_tokens': max_new_tokens,
|
300 |
-
'cache_implementation': 'paged',
|
301 |
-
}
|
302 |
-
|
303 |
-
batch_size = 4 if MODEL_CONFIG['batch_mode'] else 1
|
304 |
-
prompts = [text_prompt] * batch_size
|
305 |
-
|
306 |
-
start_time = time.time()
|
307 |
-
outputs = generator(
|
308 |
-
prompts,
|
309 |
-
batch_size=batch_size,
|
310 |
-
generate_kwargs=generation_params
|
311 |
-
)
|
312 |
-
generation_time = time.time() - start_time
|
313 |
-
|
314 |
-
print(f"[GENERATION] Generation completed in {generation_time:.2f}s")
|
315 |
-
|
316 |
-
audio_variants = []
|
317 |
-
sample_rate = outputs[0]['sampling_rate']
|
318 |
-
|
319 |
-
for i, output in enumerate(outputs):
|
320 |
-
audio_data = output['audio']
|
321 |
-
|
322 |
-
print(f"[GENERATION] Processing variant {i + 1} audio shape: {audio_data.shape}")
|
323 |
-
|
324 |
-
if hasattr(audio_data, 'cpu'):
|
325 |
-
audio_data = audio_data.cpu().numpy()
|
326 |
-
|
327 |
-
if len(audio_data.shape) == 3:
|
328 |
-
audio_data = audio_data[0]
|
329 |
-
|
330 |
-
if len(audio_data.shape) == 2:
|
331 |
-
if audio_data.shape[0] < audio_data.shape[1]:
|
332 |
-
audio_data = audio_data.T
|
333 |
-
if audio_data.shape[1] > 1:
|
334 |
-
audio_data = audio_data[:, 0]
|
335 |
-
else:
|
336 |
-
audio_data = audio_data.flatten()
|
337 |
-
|
338 |
-
audio_data = audio_data.flatten()
|
339 |
-
|
340 |
-
max_val = np.max(np.abs(audio_data))
|
341 |
-
if max_val > 0:
|
342 |
-
audio_data = audio_data / max_val * 0.95
|
343 |
-
|
344 |
-
audio_data = (audio_data * 32767).astype(np.int16)
|
345 |
-
audio_variants.append((sample_rate, audio_data))
|
346 |
-
|
347 |
-
print(f"[GENERATION] Variant {i + 1} final shape: {audio_data.shape}")
|
348 |
-
|
349 |
-
while len(audio_variants) < 4:
|
350 |
-
audio_variants.append(None)
|
351 |
-
|
352 |
-
savings_message = get_fixed_savings_message()
|
353 |
-
|
354 |
-
variants_text = "4 variants" if MODEL_CONFIG['batch_mode'] else "1 variant"
|
355 |
-
generation_info = f"✅ Generated {variants_text} in {generation_time:.2f}s\n{savings_message}"
|
356 |
-
|
357 |
-
return audio_variants[0], audio_variants[1], audio_variants[2], audio_variants[3], generation_info
|
358 |
-
|
359 |
-
except Exception as e:
|
360 |
-
print(f"[ERROR] Batch generation failed: {str(e)}")
|
361 |
-
cleanup_gpu()
|
362 |
-
error_msg = f"❌ Generation failed: {str(e)}"
|
363 |
-
return None, None, None, None, error_msg
|
364 |
-
|
365 |
-
|
366 |
-
with gr.Blocks(title="MusicGen Large - Music Generation", theme=gr.themes.Soft()) as demo:
|
367 |
gr.Markdown("# 🎵 MusicGen Large Music Generator")
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
lines=3,
|
378 |
-
value="A groovy funk bassline with a tight drum beat"
|
379 |
-
)
|
380 |
-
|
381 |
-
with gr.Row():
|
382 |
-
duration = gr.Slider(
|
383 |
-
minimum=5,
|
384 |
-
maximum=30,
|
385 |
-
value=10,
|
386 |
-
step=1,
|
387 |
-
label="Duration (seconds)"
|
388 |
)
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
396 |
)
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
with gr.Row():
|
406 |
-
audio_output1 = gr.Audio(label="Variant 1", type="numpy")
|
407 |
-
audio_output2 = gr.Audio(label="Variant 2", type="numpy", visible=MODEL_CONFIG['batch_mode'])
|
408 |
-
|
409 |
-
with gr.Row():
|
410 |
-
audio_output3 = gr.Audio(label="Variant 3", type="numpy", visible=MODEL_CONFIG['batch_mode'])
|
411 |
-
audio_output4 = gr.Audio(label="Variant 4", type="numpy", visible=MODEL_CONFIG['batch_mode'])
|
412 |
-
|
413 |
-
savings_banner = gr.Markdown(get_fixed_savings_message())
|
414 |
-
|
415 |
-
with gr.Accordion("💡 Tips & Information", open=False):
|
416 |
-
gr.Markdown(f"""
|
417 |
-
**Generation Tips:**
|
418 |
-
- Be specific in your descriptions (e.g., "slow blues guitar with harmonica")
|
419 |
-
- Higher guidance scale = follows prompt more closely
|
420 |
-
- Lower guidance scale = more creative/varied results
|
421 |
-
- Duration is limited to 30 seconds for faster generation
|
422 |
-
|
423 |
-
**Performance:**
|
424 |
-
- Accelerated by TheStage elastic compression
|
425 |
-
- L40S GPU pricing: $1.8/hour
|
426 |
-
""")
|
427 |
-
|
428 |
-
def generate_simple(text_prompt, duration, guidance_scale):
|
429 |
-
return generate_music_batch(text_prompt, duration, guidance_scale, "compressed")
|
430 |
|
431 |
generate_btn.click(
|
432 |
-
fn=
|
433 |
inputs=[text_input, duration, guidance_scale],
|
434 |
-
outputs=
|
435 |
show_progress=True
|
436 |
)
|
437 |
|
@@ -453,12 +263,7 @@ with gr.Blocks(title="MusicGen Large - Music Generation", theme=gr.themes.Soft()
|
|
453 |
gr.Markdown("---")
|
454 |
gr.Markdown("""
|
455 |
<div style="text-align: center; color: #666; font-size: 12px; margin-top: 2rem;">
|
456 |
-
<strong>
|
457 |
-
• 2.3x faster generation vs original MusicGen model<br>
|
458 |
-
• Benchmarked on L40S GPU @ $1.8/hour pricing<br>
|
459 |
-
• Elastic compression maintains audio quality while reducing compute time<br>
|
460 |
-
|
461 |
-
<strong>Model Limitations:</strong><br>
|
462 |
• The model is not able to generate realistic vocals.<br>
|
463 |
• The model has been trained with English descriptions and will not perform as well in other languages.<br>
|
464 |
• The model does not perform equally well for all music styles and cultures.<br>
|
|
|
6 |
import os
|
7 |
import tempfile
|
8 |
import soundfile as sf
|
|
|
9 |
|
10 |
os.environ['ELASTIC_LOG_LEVEL'] = 'DEBUG'
|
11 |
from transformers import AutoProcessor, pipeline
|
12 |
from elastic_models.transformers import MusicgenForConditionalGeneration
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
def set_seed(seed: int = 42):
|
16 |
random.seed(seed)
|
|
|
23 |
|
24 |
|
25 |
def cleanup_gpu():
|
26 |
+
"""Clean up GPU memory to avoid TensorRT conflicts."""
|
27 |
if torch.cuda.is_available():
|
28 |
torch.cuda.empty_cache()
|
29 |
torch.cuda.synchronize()
|
|
|
31 |
|
32 |
|
33 |
def cleanup_temp_files():
|
34 |
+
"""Clean up old temporary audio files."""
|
35 |
import glob
|
36 |
import time
|
37 |
temp_dir = tempfile.gettempdir()
|
|
|
47 |
|
48 |
_generator = None
|
49 |
_processor = None
|
|
|
|
|
50 |
|
51 |
|
52 |
def load_model():
|
|
|
88 |
return _generator, _processor
|
89 |
|
90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
def calculate_max_tokens(duration_seconds):
|
92 |
token_rate = 50
|
93 |
max_new_tokens = int(duration_seconds * token_rate)
|
|
|
160 |
|
161 |
max_val = np.max(np.abs(audio_data))
|
162 |
if max_val > 0:
|
163 |
+
audio_data = audio_data / max_val * 0.95 # Scale to 95% to avoid clipping
|
164 |
|
165 |
+
audio_data = (audio_data * 32767).astype(np.int16) ###
|
166 |
|
167 |
print(f"[GENERATION] Final audio shape: {audio_data.shape}")
|
168 |
print(f"[GENERATION] Audio range: [{np.min(audio_data)}, {np.max(audio_data)}]")
|
|
|
180 |
print(f"[GENERATION] Audio saved to: {temp_path}")
|
181 |
print(f"[GENERATION] File size: {file_size} bytes")
|
182 |
|
|
|
183 |
print(f"[GENERATION] Returning numpy tuple: ({sample_rate}, audio_array)")
|
184 |
return (sample_rate, audio_data)
|
185 |
else:
|
|
|
192 |
return None
|
193 |
|
194 |
|
195 |
+
with gr.Blocks(title="MusicGen Large - Music Generation") as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
gr.Markdown("# 🎵 MusicGen Large Music Generator")
|
197 |
+
gr.Markdown("Generate music from text descriptions using Facebook's MusicGen Large model with elastic compression.")
|
198 |
+
|
199 |
+
with gr.Row():
|
200 |
+
with gr.Column():
|
201 |
+
text_input = gr.Textbox(
|
202 |
+
label="Music Description",
|
203 |
+
placeholder="Enter a description of the music you want to generate",
|
204 |
+
lines=3,
|
205 |
+
value="A groovy funk bassline with a tight drum beat"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
)
|
207 |
+
|
208 |
+
with gr.Row():
|
209 |
+
duration = gr.Slider(
|
210 |
+
minimum=5,
|
211 |
+
maximum=30,
|
212 |
+
value=10,
|
213 |
+
step=1,
|
214 |
+
label="Duration (seconds)"
|
215 |
+
)
|
216 |
+
guidance_scale = gr.Slider(
|
217 |
+
minimum=1.0,
|
218 |
+
maximum=10.0,
|
219 |
+
value=3.0,
|
220 |
+
step=0.5,
|
221 |
+
label="Guidance Scale",
|
222 |
+
info="Higher values follow prompt more closely"
|
223 |
+
)
|
224 |
+
|
225 |
+
generate_btn = gr.Button("🎵 Generate Music", variant="primary", size="lg")
|
226 |
+
|
227 |
+
with gr.Column():
|
228 |
+
audio_output = gr.Audio(
|
229 |
+
label="Generated Music",
|
230 |
+
type="numpy"
|
231 |
)
|
232 |
+
|
233 |
+
with gr.Accordion("Tips", open=False):
|
234 |
+
gr.Markdown("""
|
235 |
+
- Be specific in your descriptions (e.g., "slow blues guitar with harmonica")
|
236 |
+
- Higher guidance scale = follows prompt more closely
|
237 |
+
- Lower guidance scale = more creative/varied results
|
238 |
+
- Duration is limited to 30 seconds for faster generation
|
239 |
+
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
240 |
|
241 |
generate_btn.click(
|
242 |
+
fn=generate_music,
|
243 |
inputs=[text_input, duration, guidance_scale],
|
244 |
+
outputs=audio_output,
|
245 |
show_progress=True
|
246 |
)
|
247 |
|
|
|
263 |
gr.Markdown("---")
|
264 |
gr.Markdown("""
|
265 |
<div style="text-align: center; color: #666; font-size: 12px; margin-top: 2rem;">
|
266 |
+
<strong>Limitations:</strong><br>
|
|
|
|
|
|
|
|
|
|
|
267 |
• The model is not able to generate realistic vocals.<br>
|
268 |
• The model has been trained with English descriptions and will not perform as well in other languages.<br>
|
269 |
• The model does not perform equally well for all music styles and cultures.<br>
|