quazim's picture
updated
f503040
raw
history blame
9.22 kB
import gradio as gr
import torch
import gc
import numpy as np
import random
import os
import tempfile
import soundfile as sf
os.environ['ELASTIC_LOG_LEVEL'] = 'DEBUG'
from transformers import AutoProcessor, pipeline
from elastic_models.transformers import MusicgenForConditionalGeneration
def set_seed(seed: int = 42):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def cleanup_gpu():
"""Clean up GPU memory to avoid TensorRT conflicts."""
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
gc.collect()
def cleanup_temp_files():
"""Clean up old temporary audio files."""
import glob
import time
temp_dir = tempfile.gettempdir()
cutoff_time = time.time() - 3600
for temp_file in glob.glob(os.path.join(temp_dir, "tmp*.wav")):
try:
if os.path.getctime(temp_file) < cutoff_time:
os.remove(temp_file)
print(f"[CLEANUP] Removed old temp file: {temp_file}")
except OSError:
pass
_generator = None
_processor = None
def load_model():
global _generator, _processor
if _generator is None:
print("[MODEL] Starting model initialization...")
cleanup_gpu()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"[MODEL] Using device: {device}")
print("[MODEL] Loading processor...")
_processor = AutoProcessor.from_pretrained(
"facebook/musicgen-large"
)
print("[MODEL] Loading model...")
model = MusicgenForConditionalGeneration.from_pretrained(
"facebook/musicgen-large",
torch_dtype=torch.float16,
device=device,
mode="S",
__paged=True,
)
model.eval()
print("[MODEL] Creating pipeline...")
_generator = pipeline(
task="text-to-audio",
model=model,
tokenizer=_processor.tokenizer,
device=device,
)
print("[MODEL] Model initialization completed successfully")
return _generator, _processor
def calculate_max_tokens(duration_seconds):
token_rate = 50
max_new_tokens = int(duration_seconds * token_rate)
print(f"[MODEL] Duration: {duration_seconds}s -> Tokens: {max_new_tokens} (rate: {token_rate})")
return max_new_tokens
def generate_music(text_prompt, duration=10, guidance_scale=3.0):
try:
generator, processor = load_model()
print(f"[GENERATION] Starting generation...")
print(f"[GENERATION] Prompt: '{text_prompt}'")
print(f"[GENERATION] Duration: {duration}s")
print(f"[GENERATION] Guidance scale: {guidance_scale}")
cleanup_gpu()
import time
set_seed(42)
print(f"[GENERATION] Using seed: {42}")
max_new_tokens = calculate_max_tokens(duration)
generation_params = {
'do_sample': True,
'guidance_scale': guidance_scale,
'max_new_tokens': max_new_tokens,
'min_new_tokens': max_new_tokens,
'cache_implementation': 'paged',
}
prompts = [text_prompt]
outputs = generator(
prompts,
batch_size=1,
generate_kwargs=generation_params
)
print(f"[GENERATION] Generation completed successfully")
output = outputs[0]
audio_data = output['audio']
sample_rate = output['sampling_rate']
print(f"[GENERATION] Audio shape: {audio_data.shape}")
print(f"[GENERATION] Sample rate: {sample_rate}")
print(f"[GENERATION] Audio dtype: {audio_data.dtype}")
print(f"[GENERATION] Audio is numpy: {type(audio_data)}")
if hasattr(audio_data, 'cpu'):
audio_data = audio_data.cpu().numpy()
print(f"[GENERATION] Audio shape after tensor conversion: {audio_data.shape}")
if len(audio_data.shape) == 3:
audio_data = audio_data[0]
if len(audio_data.shape) == 2:
if audio_data.shape[0] < audio_data.shape[1]:
audio_data = audio_data.T
if audio_data.shape[1] > 1:
audio_data = audio_data[:, 0]
else:
audio_data = audio_data.flatten()
audio_data = audio_data.flatten()
print(f"[GENERATION] Audio shape after flattening: {audio_data.shape}")
max_val = np.max(np.abs(audio_data))
if max_val > 0:
audio_data = audio_data / max_val * 0.95 # Scale to 95% to avoid clipping
audio_data = (audio_data * 32767).astype(np.int16). ###
print(f"[GENERATION] Final audio shape: {audio_data.shape}")
print(f"[GENERATION] Audio range: [{np.min(audio_data)}, {np.max(audio_data)}]")
print(f"[GENERATION] Audio dtype: {audio_data.dtype}")
print(f"[GENERATION] Sample rate: {sample_rate}")
timestamp = int(time.time() * 1000)
temp_filename = f"generated_music_{timestamp}.wav"
temp_path = os.path.join(tempfile.gettempdir(), temp_filename)
sf.write(temp_path, audio_data, sample_rate)
if os.path.exists(temp_path):
file_size = os.path.getsize(temp_path)
print(f"[GENERATION] Audio saved to: {temp_path}")
print(f"[GENERATION] File size: {file_size} bytes")
print(f"[GENERATION] Returning numpy tuple: ({sample_rate}, audio_array)")
return (sample_rate, audio_data)
else:
print(f"[ERROR] Failed to create audio file: {temp_path}")
return None
except Exception as e:
print(f"[ERROR] Generation failed: {str(e)}")
cleanup_gpu()
return None
with gr.Blocks(title="MusicGen Large - Music Generation") as demo:
gr.Markdown("# 🎵 MusicGen Large Music Generator")
gr.Markdown("Generate music from text descriptions using Facebook's MusicGen Large model with elastic compression.")
with gr.Row():
with gr.Column():
text_input = gr.Textbox(
label="Music Description",
placeholder="Enter a description of the music you want to generate",
lines=3,
value="A groovy funk bassline with a tight drum beat"
)
with gr.Row():
duration = gr.Slider(
minimum=5,
maximum=30,
value=10,
step=1,
label="Duration (seconds)"
)
guidance_scale = gr.Slider(
minimum=1.0,
maximum=10.0,
value=3.0,
step=0.5,
label="Guidance Scale",
info="Higher values follow prompt more closely"
)
generate_btn = gr.Button("🎵 Generate Music", variant="primary", size="lg")
with gr.Column():
audio_output = gr.Audio(
label="Generated Music",
type="numpy"
)
with gr.Accordion("Tips", open=False):
gr.Markdown("""
- Be specific in your descriptions (e.g., "slow blues guitar with harmonica")
- Higher guidance scale = follows prompt more closely
- Lower guidance scale = more creative/varied results
- Duration is limited to 30 seconds for faster generation
""")
generate_btn.click(
fn=generate_music,
inputs=[text_input, duration, guidance_scale],
outputs=audio_output,
show_progress=True
)
gr.Examples(
examples=[
"A groovy funk bassline with a tight drum beat",
"Relaxing acoustic guitar melody",
"Electronic dance music with heavy bass",
"Classical violin concerto",
"Reggae with steel drums and bass",
"Rock ballad with electric guitar solo",
"Jazz piano improvisation with brushed drums",
"Ambient synthwave with retro vibes",
],
inputs=text_input,
label="Example Prompts"
)
gr.Markdown("---")
gr.Markdown("""
<div style="text-align: center; color: #666; font-size: 12px; margin-top: 2rem;">
<strong>Limitations:</strong><br>
• The model is not able to generate realistic vocals.<br>
• The model has been trained with English descriptions and will not perform as well in other languages.<br>
• The model does not perform equally well for all music styles and cultures.<br>
• The model sometimes generates end of songs, collapsing to silence.<br>
• It is sometimes difficult to assess what types of text descriptions provide the best generations. Prompt engineering may be required to obtain satisfying results.
</div>
""")
if __name__ == "__main__":
cleanup_temp_files()
demo.launch()