Spaces:
Build error
Build error
Update app.py
Browse filesbump paddle from 2.0 to 3.0, model version to 5.0
app.py
CHANGED
@@ -1,90 +1,267 @@
|
|
1 |
import uvicorn
|
|
|
2 |
from fastapi.staticfiles import StaticFiles
|
3 |
import hashlib
|
|
|
4 |
from enum import Enum
|
5 |
-
from
|
6 |
-
from paddleocr import PaddleOCR, PPStructure, save_structure_res
|
7 |
from PIL import Image
|
8 |
import io
|
9 |
import numpy as np
|
|
|
10 |
|
11 |
app = FastAPI(docs_url='/')
|
12 |
-
|
|
|
13 |
output_dir = 'output'
|
|
|
14 |
|
15 |
class LangEnum(str, Enum):
|
16 |
ch = "ch"
|
17 |
en = "en"
|
18 |
japan = "japan"
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
#
|
21 |
ocr_cache = {}
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
return ocr_cache
|
29 |
|
|
|
|
|
|
|
|
|
30 |
|
|
|
|
|
|
|
|
|
31 |
@app.post("/ocr")
|
32 |
-
async def
|
33 |
file: UploadFile = File(...),
|
34 |
lang: LangEnum = LangEnum.ch,
|
35 |
-
|
36 |
):
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
-
|
48 |
-
|
49 |
-
return final_result
|
50 |
-
|
51 |
-
|
52 |
-
@app.post("/ocr_table")
|
53 |
-
async def create_upload_file(
|
54 |
file: UploadFile = File(...),
|
55 |
lang: LangEnum = LangEnum.ch,
|
56 |
-
|
57 |
):
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
|
|
|
|
|
|
80 |
return {
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
}
|
86 |
|
87 |
-
|
|
|
88 |
|
89 |
if __name__ == '__main__':
|
90 |
-
uvicorn.run(app=app)
|
|
|
1 |
import uvicorn
|
2 |
+
from fastapi import FastAPI, UploadFile, File, HTTPException
|
3 |
from fastapi.staticfiles import StaticFiles
|
4 |
import hashlib
|
5 |
+
import os
|
6 |
from enum import Enum
|
7 |
+
from paddleocr import PaddleOCR
|
|
|
8 |
from PIL import Image
|
9 |
import io
|
10 |
import numpy as np
|
11 |
+
from typing import Optional
|
12 |
|
13 |
app = FastAPI(docs_url='/')
|
14 |
+
|
15 |
+
# 确保输出目录存在
|
16 |
output_dir = 'output'
|
17 |
+
os.makedirs(output_dir, exist_ok=True)
|
18 |
|
19 |
class LangEnum(str, Enum):
|
20 |
ch = "ch"
|
21 |
en = "en"
|
22 |
japan = "japan"
|
23 |
+
korean = "korean"
|
24 |
+
chinese_cht = "chinese_cht"
|
25 |
+
fr = "fr"
|
26 |
+
de = "de"
|
27 |
|
28 |
+
# OCR 实例缓存
|
29 |
ocr_cache = {}
|
30 |
|
31 |
+
def get_ocr_instance(lang: str = "ch", use_gpu: bool = False):
|
32 |
+
"""获取OCR实例,使用PP-OCRv5模型"""
|
33 |
+
cache_key = f"v5_{lang}_{use_gpu}"
|
34 |
+
|
35 |
+
if cache_key not in ocr_cache:
|
36 |
+
# 使用PaddleOCR 3.0的新API + PP-OCRv5模型
|
37 |
+
ocr_cache[cache_key] = PaddleOCR(
|
38 |
+
ocr_version="PP-OCRv5", # 指定使用PP-OCRv5版本
|
39 |
+
lang=lang,
|
40 |
+
text_detection_model_name="PP-OCRv5_server_det", # 使用server版本检测模型
|
41 |
+
text_recognition_model_name="PP-OCRv5_server_rec", # 使用server版本识别模型
|
42 |
+
use_doc_orientation_classify=False, # 关闭文档方向分类
|
43 |
+
use_doc_unwarping=False, # 关闭文档矫正
|
44 |
+
use_textline_orientation=False, # 关闭文本行方向分类
|
45 |
+
device="gpu" if use_gpu else "cpu"
|
46 |
+
)
|
47 |
|
48 |
+
return ocr_cache[cache_key]
|
49 |
|
50 |
+
def validate_image(file: UploadFile):
|
51 |
+
"""验证上传的文件"""
|
52 |
+
if not file.content_type or not file.content_type.startswith('image/'):
|
53 |
+
raise HTTPException(status_code=400, detail="文件必须是图片格式")
|
54 |
|
55 |
+
# 检查文件大小 (最大10MB)
|
56 |
+
if hasattr(file, 'size') and file.size and file.size > 10 * 1024 * 1024:
|
57 |
+
raise HTTPException(status_code=400, detail="图片文件大小不能超过10MB")
|
58 |
+
|
59 |
@app.post("/ocr")
|
60 |
+
async def ocr_recognition(
|
61 |
file: UploadFile = File(...),
|
62 |
lang: LangEnum = LangEnum.ch,
|
63 |
+
use_gpu: bool = False
|
64 |
):
|
65 |
+
"""PP-OCRv5文字识别 - 支持5种文字类型的单模型"""
|
66 |
+
try:
|
67 |
+
validate_image(file)
|
68 |
+
|
69 |
+
contents = await file.read()
|
70 |
+
if not contents:
|
71 |
+
raise HTTPException(status_code=400, detail="文件内容为空")
|
72 |
+
|
73 |
+
# 转换图片格式
|
74 |
+
image = Image.open(io.BytesIO(contents))
|
75 |
+
if image.mode != 'RGB':
|
76 |
+
image = image.convert('RGB')
|
77 |
+
|
78 |
+
# 获取OCR实例
|
79 |
+
ocr = get_ocr_instance(lang=lang, use_gpu=use_gpu)
|
80 |
+
|
81 |
+
# 转换为numpy数组进行识别
|
82 |
+
img_array = np.array(image)
|
83 |
+
|
84 |
+
# 使用PP-OCRv5进行识别
|
85 |
+
results = ocr.predict(img_array)
|
86 |
+
|
87 |
+
if not results or len(results) == 0:
|
88 |
+
return {
|
89 |
+
"success": True,
|
90 |
+
"message": "未检测到文字",
|
91 |
+
"model_version": "PP-OCRv5",
|
92 |
+
"language": lang,
|
93 |
+
"count": 0,
|
94 |
+
"results": []
|
95 |
+
}
|
96 |
|
97 |
+
# 处理识别结果
|
98 |
+
result = results[0] # 取第一个结果
|
99 |
+
|
100 |
+
# 提取结果信息
|
101 |
+
ocr_results = []
|
102 |
+
if hasattr(result, 'json') and result.json:
|
103 |
+
# 从result.json中提取信息
|
104 |
+
result_data = result.json
|
105 |
+
|
106 |
+
rec_texts = result_data.get('rec_texts', [])
|
107 |
+
rec_scores = result_data.get('rec_scores', [])
|
108 |
+
dt_polys = result_data.get('dt_polys', [])
|
109 |
+
|
110 |
+
for i, (text, score, poly) in enumerate(zip(rec_texts, rec_scores, dt_polys)):
|
111 |
+
ocr_results.append({
|
112 |
+
"id": i,
|
113 |
+
"text": text,
|
114 |
+
"confidence": round(float(score), 4),
|
115 |
+
"bbox": poly.tolist() if hasattr(poly, 'tolist') else poly
|
116 |
+
})
|
117 |
+
|
118 |
+
return {
|
119 |
+
"success": True,
|
120 |
+
"model_version": "PP-OCRv5",
|
121 |
+
"language": lang,
|
122 |
+
"count": len(ocr_results),
|
123 |
+
"results": ocr_results
|
124 |
+
}
|
125 |
+
|
126 |
+
except Exception as e:
|
127 |
+
raise HTTPException(status_code=500, detail=f"OCR识别失败: {str(e)}")
|
128 |
|
129 |
+
@app.post("/ocr_table")
|
130 |
+
async def table_recognition(
|
|
|
|
|
|
|
|
|
|
|
131 |
file: UploadFile = File(...),
|
132 |
lang: LangEnum = LangEnum.ch,
|
133 |
+
use_gpu: bool = False
|
134 |
):
|
135 |
+
"""PP-StructureV3表格识别"""
|
136 |
+
try:
|
137 |
+
validate_image(file)
|
138 |
+
|
139 |
+
contents = await file.read()
|
140 |
+
if not contents:
|
141 |
+
raise HTTPException(status_code=400, detail="文件内容为空")
|
142 |
+
|
143 |
+
# 计算文件哈希
|
144 |
+
file_hash = hashlib.sha256(contents).hexdigest()[:12]
|
145 |
+
|
146 |
+
# 转换图片格式
|
147 |
+
image = Image.open(io.BytesIO(contents))
|
148 |
+
if image.mode != 'RGB':
|
149 |
+
image = image.convert('RGB')
|
150 |
+
|
151 |
+
# 使用PP-StructureV3进行表格识别
|
152 |
+
# 这里需要单独的表格识别产线
|
153 |
+
from paddleocr import PPStructure
|
154 |
+
|
155 |
+
# 获取表格识别实例
|
156 |
+
table_key = f"table_v3_{lang}_{use_gpu}"
|
157 |
+
if table_key not in ocr_cache:
|
158 |
+
ocr_cache[table_key] = PPStructure(
|
159 |
+
table=True,
|
160 |
+
lang=lang,
|
161 |
+
device="gpu" if use_gpu else "cpu",
|
162 |
+
show_log=True
|
163 |
+
)
|
164 |
+
|
165 |
+
table_engine = ocr_cache[table_key]
|
166 |
+
img_array = np.array(image)
|
167 |
+
result = table_engine(img_array)
|
168 |
+
|
169 |
+
# 保存结果
|
170 |
+
try:
|
171 |
+
from paddleocr import save_structure_res
|
172 |
+
save_structure_res(result, output_dir, file_hash)
|
173 |
+
except Exception as save_error:
|
174 |
+
print(f"保存结果文件失败: {save_error}")
|
175 |
+
|
176 |
+
# 处理结果
|
177 |
+
tables = []
|
178 |
+
images = []
|
179 |
+
texts = []
|
180 |
+
|
181 |
+
for item in result:
|
182 |
+
item_type = item.get('type', '')
|
183 |
+
bbox = item.get('bbox', [])
|
184 |
+
res = item.get('res', {})
|
185 |
+
|
186 |
+
if item_type == 'table':
|
187 |
+
tables.append({
|
188 |
+
"type": item_type,
|
189 |
+
"bbox": bbox,
|
190 |
+
"html": res.get('html', ''),
|
191 |
+
"confidence": res.get('confidence', 0.0)
|
192 |
+
})
|
193 |
+
elif item_type == 'figure':
|
194 |
+
images.append({
|
195 |
+
"type": item_type,
|
196 |
+
"bbox": bbox
|
197 |
+
})
|
198 |
+
else:
|
199 |
+
texts.append({
|
200 |
+
"type": item_type,
|
201 |
+
"bbox": bbox,
|
202 |
+
"text": res.get('text', '') if isinstance(res, dict) else str(res)
|
203 |
+
})
|
204 |
+
|
205 |
+
return {
|
206 |
+
"success": True,
|
207 |
+
"model_version": "PP-StructureV3",
|
208 |
+
"language": lang,
|
209 |
+
"hash": file_hash,
|
210 |
+
"summary": {
|
211 |
+
"total_elements": len(result),
|
212 |
+
"tables": len(tables),
|
213 |
+
"images": len(images),
|
214 |
+
"texts": len(texts)
|
215 |
+
},
|
216 |
+
"tables": tables,
|
217 |
+
"images": images,
|
218 |
+
"texts": texts
|
219 |
+
}
|
220 |
+
|
221 |
+
except Exception as e:
|
222 |
+
raise HTTPException(status_code=500, detail=f"表格识别失败: {str(e)}")
|
223 |
|
224 |
+
@app.get("/health")
|
225 |
+
async def health_check():
|
226 |
+
"""健康检查接口"""
|
227 |
+
return {
|
228 |
+
"status": "healthy",
|
229 |
+
"ocr_version": "PP-OCRv5",
|
230 |
+
"structure_version": "PP-StructureV3",
|
231 |
+
"cache_instances": len(ocr_cache),
|
232 |
+
"supported_languages": [lang.value for lang in LangEnum]
|
233 |
+
}
|
234 |
|
235 |
+
@app.get("/models")
|
236 |
+
async def get_model_info():
|
237 |
+
"""获取模型信息"""
|
238 |
+
return {
|
239 |
+
"ocr_models": {
|
240 |
+
"PP-OCRv5_server_det": "高精度文本检测模型",
|
241 |
+
"PP-OCRv5_server_rec": "高精度文本识别模型 - 支持中英日韩繁5种文字类型"
|
242 |
+
},
|
243 |
+
"structure_models": {
|
244 |
+
"PP-StructureV3": "通用文档解析方案 - 支持表格、图像、文本混合识别"
|
245 |
+
},
|
246 |
+
"features": {
|
247 |
+
"multi_language": "单模型支持5种文字类型",
|
248 |
+
"handwriting": "显著提升手写体识别能力",
|
249 |
+
"accuracy_improvement": "相比PP-OCRv4提升13个百分点"
|
250 |
+
}
|
251 |
+
}
|
252 |
|
253 |
+
@app.get("/")
|
254 |
+
async def root():
|
255 |
+
"""根路径"""
|
256 |
return {
|
257 |
+
"message": "PP-OCRv5 OCR API 服务正常运行",
|
258 |
+
"version": "3.0",
|
259 |
+
"models": "PP-OCRv5 + PP-StructureV3",
|
260 |
+
"docs": "/docs"
|
261 |
}
|
262 |
|
263 |
+
# 挂载静态文件服务
|
264 |
+
app.mount("/output", StaticFiles(directory=output_dir, follow_symlink=True, html=True), name="output")
|
265 |
|
266 |
if __name__ == '__main__':
|
267 |
+
uvicorn.run(app=app, host="0.0.0.0", port=7860)
|