# Adapted from https://github.com/showlab/Tune-A-Video/blob/main/tuneavideo/pipelines/pipeline_tuneavideo.py import inspect import itertools import logging from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Tuple, Union import numpy as np import torch from diffusers import LCMScheduler from diffusers.configuration_utils import FrozenDict from diffusers.image_processor import VaeImageProcessor from diffusers.loaders import LoraLoaderMixin, TextualInversionLoaderMixin from diffusers.models import AutoencoderKL, ControlNetModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.schedulers import (DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler) from diffusers.utils import (BaseOutput, deprecate, is_accelerate_available, is_accelerate_version) from diffusers.utils.torch_utils import is_compiled_module, randn_tensor from einops import rearrange from packaging import version from tqdm.rich import tqdm from transformers import CLIPImageProcessor, CLIPTokenizer from animatediff.ip_adapter import IPAdapter, IPAdapterFull, IPAdapterPlus from animatediff.models.attention import BasicTransformerBlock from animatediff.models.clip import CLIPSkipTextModel from animatediff.models.unet import (UNet3DConditionModel, UNetMidBlock3DCrossAttn) from animatediff.models.unet_blocks import (CrossAttnDownBlock3D, CrossAttnUpBlock3D, DownBlock3D, UpBlock3D) from animatediff.pipelines.context import (get_context_scheduler, get_total_steps) from animatediff.utils.model import nop_train from animatediff.utils.pipeline import get_memory_format from animatediff.utils.util import (end_profile, get_tensor_interpolation_method, show_gpu, start_profile, stopwatch_record, stopwatch_start, stopwatch_stop) logger = logging.getLogger(__name__) C_REF_MODE = "write" def torch_dfs(model: torch.nn.Module): result = [model] for child in model.children(): result += torch_dfs(child) return result class PromptEncoder: def __init__( self, pipe, device, latents_device, num_videos_per_prompt, do_classifier_free_guidance, region_condi_list, negative_prompt, is_signle_prompt_mode, clip_skip, multi_uncond_mode ): self.pipe = pipe self.is_single_prompt_mode=is_signle_prompt_mode self.do_classifier_free_guidance = do_classifier_free_guidance uncond_num = 0 if do_classifier_free_guidance: if multi_uncond_mode: uncond_num = len(region_condi_list) else: uncond_num = 1 ### text prompt_nums = [] prompt_map_list = [] prompt_list = [] for condi in region_condi_list: _prompt_map = condi["prompt_map"] prompt_map_list.append(_prompt_map) _prompt_map = dict(sorted(_prompt_map.items())) _prompt_list = [_prompt_map[key_frame] for key_frame in _prompt_map.keys()] prompt_nums.append( len(_prompt_list) ) prompt_list += _prompt_list prompt_embeds = pipe._encode_prompt( prompt_list, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds=None, negative_prompt_embeds=None, clip_skip=clip_skip, ).to(device = latents_device) self.prompt_embeds_dtype = prompt_embeds.dtype if do_classifier_free_guidance: negative, positive = prompt_embeds.chunk(2, 0) negative = negative.chunk(negative.shape[0], 0) positive = positive.chunk(positive.shape[0], 0) else: positive = prompt_embeds positive = positive.chunk(positive.shape[0], 0) if pipe.ip_adapter: pipe.ip_adapter.set_text_length(positive[0].shape[1]) prompt_embeds_region_list = [] if do_classifier_free_guidance: prompt_embeds_region_list = [ { 0:negative[0] } ] * uncond_num + prompt_embeds_region_list pos_index = 0 for prompt_map, num in zip(prompt_map_list, prompt_nums): prompt_embeds_map={} pos = positive[pos_index:pos_index+num] for i, key_frame in enumerate(prompt_map): prompt_embeds_map[key_frame] = pos[i] prompt_embeds_region_list.append( prompt_embeds_map ) pos_index += num if do_classifier_free_guidance: prompt_map_list = [ { 0:negative_prompt } ] * uncond_num + prompt_map_list self.prompt_map_list = prompt_map_list self.prompt_embeds_region_list = prompt_embeds_region_list ### image if pipe.ip_adapter: ip_im_nums = [] ip_im_map_list = [] ip_im_list = [] for condi in region_condi_list: _ip_im_map = condi["ip_adapter_map"]["images"] ip_im_map_list.append(_ip_im_map) _ip_im_map = dict(sorted(_ip_im_map.items())) _ip_im_list = [_ip_im_map[key_frame] for key_frame in _ip_im_map.keys()] ip_im_nums.append( len(_ip_im_list) ) ip_im_list += _ip_im_list positive, negative = pipe.ip_adapter.get_image_embeds(ip_im_list) positive = positive.to(device=latents_device) negative = negative.to(device=latents_device) bs_embed, seq_len, _ = positive.shape positive = positive.repeat(1, 1, 1) positive = positive.view(bs_embed * 1, seq_len, -1) bs_embed, seq_len, _ = negative.shape negative = negative.repeat(1, 1, 1) negative = negative.view(bs_embed * 1, seq_len, -1) if do_classifier_free_guidance: negative = negative.chunk(negative.shape[0], 0) positive = positive.chunk(positive.shape[0], 0) else: positive = positive.chunk(positive.shape[0], 0) im_prompt_embeds_region_list = [] if do_classifier_free_guidance: im_prompt_embeds_region_list = [ { 0:negative[0] } ] * uncond_num + im_prompt_embeds_region_list pos_index = 0 for ip_im_map, num in zip(ip_im_map_list, ip_im_nums): im_prompt_embeds_map={} pos = positive[pos_index:pos_index+num] for i, key_frame in enumerate(ip_im_map): im_prompt_embeds_map[key_frame] = pos[i] im_prompt_embeds_region_list.append( im_prompt_embeds_map ) pos_index += num if do_classifier_free_guidance: ip_im_map_list = [ { 0:None } ] * uncond_num + ip_im_map_list self.ip_im_map_list = ip_im_map_list self.im_prompt_embeds_region_list = im_prompt_embeds_region_list def _get_current_prompt_embeds_from_text( self, prompt_map, prompt_embeds_map, center_frame = None, video_length : int = 0 ): key_prev = list(prompt_map.keys())[-1] key_next = list(prompt_map.keys())[0] for p in prompt_map.keys(): if p > center_frame: key_next = p break key_prev = p dist_prev = center_frame - key_prev if dist_prev < 0: dist_prev += video_length dist_next = key_next - center_frame if dist_next < 0: dist_next += video_length if key_prev == key_next or dist_prev + dist_next == 0: return prompt_embeds_map[key_prev] rate = dist_prev / (dist_prev + dist_next) return get_tensor_interpolation_method()( prompt_embeds_map[key_prev], prompt_embeds_map[key_next], rate ) def get_current_prompt_embeds_from_text( self, center_frame = None, video_length : int = 0 ): outputs = () for prompt_map, prompt_embeds_map in zip(self.prompt_map_list, self.prompt_embeds_region_list): embs = self._get_current_prompt_embeds_from_text( prompt_map, prompt_embeds_map, center_frame, video_length) outputs += (embs,) return outputs def _get_current_prompt_embeds_from_image( self, ip_im_map, im_prompt_embeds_map, center_frame = None, video_length : int = 0 ): key_prev = list(ip_im_map.keys())[-1] key_next = list(ip_im_map.keys())[0] for p in ip_im_map.keys(): if p > center_frame: key_next = p break key_prev = p dist_prev = center_frame - key_prev if dist_prev < 0: dist_prev += video_length dist_next = key_next - center_frame if dist_next < 0: dist_next += video_length if key_prev == key_next or dist_prev + dist_next == 0: return im_prompt_embeds_map[key_prev] rate = dist_prev / (dist_prev + dist_next) return get_tensor_interpolation_method()( im_prompt_embeds_map[key_prev], im_prompt_embeds_map[key_next], rate) def get_current_prompt_embeds_from_image( self, center_frame = None, video_length : int = 0 ): outputs=() for prompt_map, prompt_embeds_map in zip(self.ip_im_map_list, self.im_prompt_embeds_region_list): embs = self._get_current_prompt_embeds_from_image( prompt_map, prompt_embeds_map, center_frame, video_length) outputs += (embs,) return outputs def get_current_prompt_embeds_single( self, context: List[int] = None, video_length : int = 0 ): center_frame = context[len(context)//2] text_emb = self.get_current_prompt_embeds_from_text(center_frame, video_length) text_emb = torch.cat(text_emb) if self.pipe.ip_adapter: image_emb = self.get_current_prompt_embeds_from_image(center_frame, video_length) image_emb = torch.cat(image_emb) return torch.cat([text_emb,image_emb], dim=1) else: return text_emb def get_current_prompt_embeds_multi( self, context: List[int] = None, video_length : int = 0 ): emb_list = [] for c in context: t = self.get_current_prompt_embeds_from_text(c, video_length) for i, emb in enumerate(t): if i >= len(emb_list): emb_list.append([]) emb_list[i].append(emb) text_emb = [] for emb in emb_list: emb = torch.cat(emb) text_emb.append(emb) text_emb = torch.cat(text_emb) if self.pipe.ip_adapter == None: return text_emb emb_list = [] for c in context: t = self.get_current_prompt_embeds_from_image(c, video_length) for i, emb in enumerate(t): if i >= len(emb_list): emb_list.append([]) emb_list[i].append(emb) image_emb = [] for emb in emb_list: emb = torch.cat(emb) image_emb.append(emb) image_emb = torch.cat(image_emb) return torch.cat([text_emb,image_emb], dim=1) def get_current_prompt_embeds( self, context: List[int] = None, video_length : int = 0 ): return self.get_current_prompt_embeds_single(context,video_length) if self.is_single_prompt_mode else self.get_current_prompt_embeds_multi(context,video_length) def get_prompt_embeds_dtype(self): return self.prompt_embeds_dtype def get_condi_size(self): return len(self.prompt_embeds_region_list) class RegionMask: def __init__( self, region_list, batch_size, num_channels_latents, video_length, height, width, vae_scale_factor, dtype, device, multi_uncond_mode ): shape = ( batch_size, num_channels_latents, video_length, height // vae_scale_factor, width // vae_scale_factor, ) def get_area(m:torch.Tensor): area = torch.where(m == 1) if len(area[0]) == 0 or len(area[1]) == 0: return (0,0,0,0) ymin = min(area[0]) ymax = max(area[0]) xmin = min(area[1]) xmax = max(area[1]) h = ymax+1 - ymin w = xmax+1 - xmin mod_h = (h + 7) // 8 * 8 diff_h = mod_h - h ymin -= diff_h if ymin < 0: ymin = 0 h = mod_h mod_w = (w + 7) // 8 * 8 diff_w = mod_w - w xmin -= diff_w if xmin < 0: xmin = 0 w = mod_w return (int(xmin), int(ymin), int(w), int(h)) for r in region_list: mask_latents = torch.zeros(shape) cur = r["mask_images"] area_info = None if cur: area_info = [ (0,0,0,0) for l in range(video_length)] for frame_no in cur: mask = cur[frame_no] mask = np.array(mask.convert("L"))[None, None, :] mask = mask.astype(np.float32) / 255.0 mask[mask < 0.5] = 0 mask[mask >= 0.5] = 1 mask = torch.from_numpy(mask) mask = torch.nn.functional.interpolate( mask, size=(height // vae_scale_factor, width // vae_scale_factor) ) area_info[frame_no] = get_area(mask[0][0]) mask_latents[:,:,frame_no,:,:] = mask else: mask_latents = torch.ones(shape) w = mask_latents.shape[4] h = mask_latents.shape[3] r["mask_latents"] = mask_latents.to(device=device, dtype=dtype, non_blocking=True) r["mask_images"] = None r["area"] = area_info r["latent_size"] = (w, h) self.region_list = region_list self.multi_uncond_mode = multi_uncond_mode self.cond2region = {} for i,r in enumerate(self.region_list): if r["src"] != -1: self.cond2region[r["src"]] = i def get_mask( self, region_index, ): return self.region_list[region_index]["mask_latents"] def get_region_from_layer( self, cond_layer, cond_nums, ): if self.multi_uncond_mode: cond_layer = cond_layer if cond_layer < cond_nums//2 else cond_layer - cond_nums//2 else: if cond_layer == 0: return -1 #uncond for all layer cond_layer -= 1 if cond_layer not in self.cond2region: logger.warn(f"unknown {cond_layer=}") return -1 return self.cond2region[cond_layer] def get_area( self, cond_layer, cond_nums, context, ): if self.multi_uncond_mode: cond_layer = cond_layer if cond_layer < cond_nums//2 else cond_layer - cond_nums//2 else: if cond_layer == 0: return None,None cond_layer -= 1 if cond_layer not in self.cond2region: return None,None region_index = self.cond2region[cond_layer] if region_index == -1: return None,None _,_,w,h = self.region_list[region_index]["area"][context[0]] l_w, l_h = self.region_list[region_index]["latent_size"] xy_list = [] for c in context: x,y,_,_ = self.region_list[region_index]["area"][c] if x + w > l_w: x -= (x+w - l_w) if y + h > l_h: y -= (y+h - l_h) xy_list.append( (x,y) ) if self.region_list[region_index]["area"]: return (w,h), xy_list else: return None,None def get_crop_generation_rate( self, cond_layer, cond_nums, ): if self.multi_uncond_mode: cond_layer = cond_layer if cond_layer < cond_nums//2 else cond_layer - cond_nums//2 else: if cond_layer == 0: return 0 cond_layer -= 1 if cond_layer not in self.cond2region: return 0 region_index = self.cond2region[cond_layer] if region_index == -1: return 0 return self.region_list[region_index]["crop_generation_rate"] @dataclass class AnimationPipelineOutput(BaseOutput): videos: Union[torch.Tensor, np.ndarray] class AnimationPipeline(DiffusionPipeline, TextualInversionLoaderMixin): _optional_components = ["feature_extractor"] vae: AutoencoderKL text_encoder: CLIPSkipTextModel tokenizer: CLIPTokenizer unet: UNet3DConditionModel feature_extractor: CLIPImageProcessor scheduler: Union[ DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ] controlnet_map: Dict[ str , ControlNetModel ] ip_adapter: IPAdapter = None model_cpu_offload_seq = "text_encoder->unet->vae" def __init__( self, vae: AutoencoderKL, text_encoder: CLIPSkipTextModel, tokenizer: CLIPTokenizer, unet: UNet3DConditionModel, scheduler: Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ], feature_extractor: CLIPImageProcessor, controlnet_map: Dict[ str , ControlNetModel ]=None, ): super().__init__() if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1: deprecation_message = ( f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " "to update the config accordingly as leaving `steps_offset` might led to incorrect results" " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" " file" ) deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(scheduler.config) new_config["steps_offset"] = 1 scheduler._internal_dict = FrozenDict(new_config) if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True: deprecation_message = ( f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`." " `clip_sample` should be set to False in the configuration file. Please make sure to update the" " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in" " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very" " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file" ) deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(scheduler.config) new_config["clip_sample"] = False scheduler._internal_dict = FrozenDict(new_config) is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse( version.parse(unet.config._diffusers_version).base_version ) < version.parse("0.9.0.dev0") is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64 if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: deprecation_message = ( "The configuration file of the unet has set the default `sample_size` to smaller than" " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the" " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-" " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5" " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`" " in the config might lead to incorrect results in future versions. If you have downloaded this" " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for" " the `unet/config.json` file" ) deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(unet.config) new_config["sample_size"] = 64 unet._internal_dict = FrozenDict(new_config) self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, feature_extractor=feature_extractor, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) self.control_image_processor = VaeImageProcessor( vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False ) self.controlnet_map = controlnet_map def enable_vae_slicing(self): r""" Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. """ self.vae.enable_slicing() def disable_vae_slicing(self): r""" Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to computing decoding in one step. """ self.vae.disable_slicing() def enable_vae_tiling(self): r""" Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in several steps. This is useful to save a large amount of memory and to allow the processing of larger images. """ self.vae.enable_tiling() def disable_vae_tiling(self): r""" Disable tiled VAE decoding. If `enable_vae_tiling` was previously invoked, this method will go back to computing decoding in one step. """ self.vae.disable_tiling() def __enable_model_cpu_offload(self, gpu_id=0): r""" Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward` method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`. """ if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.") device = torch.device(f"cuda:{gpu_id}") if self.device.type != "cpu": self.to("cpu", silence_dtype_warnings=True) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) hook = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.vae]: _, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook) if self.safety_checker is not None: _, hook = cpu_offload_with_hook(self.safety_checker, device, prev_module_hook=hook) # control net hook has be manually offloaded as it alternates with unet cpu_offload_with_hook(self.controlnet, device) # We'll offload the last model manually. self.final_offload_hook = hook @property def _execution_device(self): r""" Returns the device on which the pipeline's models will be executed. After calling `pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module hooks. """ if not hasattr(self.unet, "_hf_hook"): return self.device for module in self.unet.modules(): if ( hasattr(module, "_hf_hook") and hasattr(module._hf_hook, "execution_device") and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return self.device def _encode_prompt( self, prompt, device, num_videos_per_prompt: int = 1, do_classifier_free_guidance: bool = False, negative_prompt=None, max_embeddings_multiples=3, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, clip_skip: int = 1, ): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `list(int)`): prompt to be encoded device: (`torch.device`): torch device num_videos_per_prompt (`int`): number of videos that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`): The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). max_embeddings_multiples (`int`, *optional*, defaults to `3`): The max multiple length of prompt embeddings compared to the max output length of text encoder. """ from ..utils.lpw_stable_diffusion import get_weighted_text_embeddings if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if negative_prompt_embeds is None: if negative_prompt is None: negative_prompt = [""] * batch_size elif isinstance(negative_prompt, str): negative_prompt = [negative_prompt] * batch_size if batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) if prompt_embeds is None or negative_prompt_embeds is None: if isinstance(self, TextualInversionLoaderMixin): prompt = self.maybe_convert_prompt(prompt, self.tokenizer) if do_classifier_free_guidance and negative_prompt_embeds is None: negative_prompt = self.maybe_convert_prompt(negative_prompt, self.tokenizer) prompt_embeds1, negative_prompt_embeds1 = get_weighted_text_embeddings( pipe=self, prompt=prompt, uncond_prompt=negative_prompt if do_classifier_free_guidance else None, max_embeddings_multiples=max_embeddings_multiples, clip_skip=clip_skip ) if prompt_embeds is None: prompt_embeds = prompt_embeds1 if negative_prompt_embeds is None: negative_prompt_embeds = negative_prompt_embeds1 bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1) prompt_embeds = prompt_embeds.view(bs_embed * num_videos_per_prompt, seq_len, -1) if do_classifier_free_guidance: bs_embed, seq_len, _ = negative_prompt_embeds.shape negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_videos_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(bs_embed * num_videos_per_prompt, seq_len, -1) prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) return prompt_embeds def __encode_prompt( self, prompt, device, num_videos_per_prompt: int = 1, do_classifier_free_guidance: bool = False, negative_prompt=None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, lora_scale: Optional[float] = None, clip_skip: int = 1, ): # set lora scale so that monkey patched LoRA # function of text encoder can correctly access it if lora_scale is not None and isinstance(self, LoraLoaderMixin): self._lora_scale = lora_scale batch_size = len(prompt) if isinstance(prompt, list) else 1 if prompt_embeds is None: # textual inversion: procecss multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): prompt = self.maybe_convert_prompt(prompt, self.tokenizer) text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = self.tokenizer.batch_decode( untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) if ( hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask ): attention_mask = text_inputs.attention_mask.to(device) else: attention_mask = None prompt_embeds = self.text_encoder( text_input_ids.to(device), attention_mask=attention_mask, clip_skip=clip_skip, ) prompt_embeds = prompt_embeds[0] bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1) prompt_embeds = prompt_embeds.view(bs_embed * num_videos_per_prompt, seq_len, -1) # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif prompt is not None and type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt # textual inversion: procecss multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) max_length = prompt_embeds.shape[1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", ) uncond_input_ids = uncond_input.input_ids if ( hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask ): attention_mask = uncond_input.attention_mask.to(device) else: attention_mask = None negative_prompt_embeds = self.text_encoder( uncond_input_ids.to(device), attention_mask=attention_mask, clip_skip=clip_skip, ) negative_prompt_embeds = negative_prompt_embeds[0] if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_videos_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view( batch_size * num_videos_per_prompt, seq_len, -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) return prompt_embeds def interpolate_latents(self, latents: torch.Tensor, interpolation_factor:int, device ): if interpolation_factor < 2: return latents new_latents = torch.zeros( (latents.shape[0],latents.shape[1],((latents.shape[2]-1) * interpolation_factor)+1, latents.shape[3],latents.shape[4]), device=latents.device, dtype=latents.dtype, ) org_video_length = latents.shape[2] rate = [i/interpolation_factor for i in range(interpolation_factor)][1:] new_index = 0 v0 = None v1 = None for i0,i1 in zip( range( org_video_length ),range( org_video_length )[1:] ): v0 = latents[:,:,i0,:,:] v1 = latents[:,:,i1,:,:] new_latents[:,:,new_index,:,:] = v0 new_index += 1 for f in rate: v = get_tensor_interpolation_method()(v0.to(device=device),v1.to(device=device),f) new_latents[:,:,new_index,:,:] = v.to(latents.device) new_index += 1 new_latents[:,:,new_index,:,:] = v1 new_index += 1 return new_latents def decode_latents(self, latents: torch.Tensor): video_length = latents.shape[2] latents = 1 / self.vae.config.scaling_factor * latents latents = rearrange(latents, "b c f h w -> (b f) c h w") # video = self.vae.decode(latents).sample video = [] for frame_idx in range(latents.shape[0]): video.append( # self.vae.decode(latents[frame_idx : frame_idx + 1].to(self.vae.device, self.vae.dtype)).sample.cpu() self.vae.decode(latents[frame_idx : frame_idx + 1].to("cuda", self.vae.dtype)).sample.cpu() ) video = torch.cat(video) video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length) video = (video / 2 + 0.5).clamp(0, 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16 video = video.float().numpy() return video def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs def check_inputs( self, prompt, height, width, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, ): if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if callback_steps is not None: if not isinstance(callback_steps, list): raise ValueError("`callback_steps` has to be a list of positive integers.") for callback_step in callback_steps: if not isinstance(callback_step, int) or callback_step <= 0: raise ValueError("`callback_steps` has to be a list of positive integers.") if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) def prepare_image( self, image, width, height, batch_size, num_images_per_prompt, device, dtype, do_classifier_free_guidance=False, guess_mode=False, ): image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32) image_batch_size = image.shape[0] if image_batch_size == 1: repeat_by = batch_size else: # image batch size is the same as prompt batch size repeat_by = num_images_per_prompt image = image.repeat_interleave(repeat_by, dim=0) image = image.to(device=device, dtype=dtype) #if do_classifier_free_guidance and not guess_mode: # image = torch.cat([image] * 2) return image def prepare_ref_image( self, image, width, height, batch_size, num_images_per_prompt, device, dtype, do_classifier_free_guidance=False, guess_mode=False, ): image = self.image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32) image_batch_size = image.shape[0] if image_batch_size == 1: repeat_by = batch_size else: # image batch size is the same as prompt batch size repeat_by = num_images_per_prompt image = image.repeat_interleave(repeat_by, dim=0) image = image.to(device=device, dtype=dtype) if do_classifier_free_guidance and not guess_mode: image = torch.cat([image] * 2) return image def prepare_latents( self, batch_size, num_channels_latents, video_length, height, width, dtype, device, generator, img2img_map, timestep, latents=None, is_strength_max=True, return_noise=True, return_image_latents=True, ): shape = ( batch_size, num_channels_latents, video_length, height // self.vae_scale_factor, width // self.vae_scale_factor, ) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) image_latents = None if img2img_map: image_latents = torch.zeros(shape, device=device, dtype=dtype) for frame_no in img2img_map["images"]: img = img2img_map["images"][frame_no] img = self.image_processor.preprocess(img) img = img.to(device="cuda", dtype=self.vae.dtype) img = self.vae.encode(img).latent_dist.sample(generator) img = self.vae.config.scaling_factor * img img = torch.cat([img], dim=0) image_latents[:,:,frame_no,:,:] = img.to(device=device, dtype=dtype) else: is_strength_max = True if latents is None: noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) latents = noise if is_strength_max else self.scheduler.add_noise(image_latents, noise, timestep) latents = latents * self.scheduler.init_noise_sigma if is_strength_max else latents else: noise = latents.to(device) latents = noise * self.scheduler.init_noise_sigma outputs = (latents.to(device, dtype),) if return_noise: outputs += (noise.to(device, dtype),) if return_image_latents: if image_latents is not None: outputs += (image_latents.to(device, dtype),) else: outputs += (None,) return outputs # from diffusers/examples/community/stable_diffusion_controlnet_reference.py def prepare_ref_latents(self, refimage, batch_size, dtype, device, generator, do_classifier_free_guidance): refimage = refimage.to(device=device, dtype=self.vae.dtype) # encode the mask image into latents space so we can concatenate it to the latents if isinstance(generator, list): ref_image_latents = [ self.vae.encode(refimage[i : i + 1]).latent_dist.sample(generator=generator[i]) for i in range(batch_size) ] ref_image_latents = torch.cat(ref_image_latents, dim=0) else: ref_image_latents = self.vae.encode(refimage).latent_dist.sample(generator=generator) ref_image_latents = self.vae.config.scaling_factor * ref_image_latents ref_image_latents = ref_image_latents.to(device=device, dtype=dtype) # duplicate mask and ref_image_latents for each generation per prompt, using mps friendly method if ref_image_latents.shape[0] < batch_size: if not batch_size % ref_image_latents.shape[0] == 0: raise ValueError( "The passed images and the required batch size don't match. Images are supposed to be duplicated" f" to a total batch size of {batch_size}, but {ref_image_latents.shape[0]} images were passed." " Make sure the number of images that you pass is divisible by the total requested batch size." ) ref_image_latents = ref_image_latents.repeat(batch_size // ref_image_latents.shape[0], 1, 1, 1) ref_image_latents = torch.cat([ref_image_latents] * 2) if do_classifier_free_guidance else ref_image_latents # aligning device to prevent device errors when concating it with the latent model input ref_image_latents = ref_image_latents.to(device=device, dtype=dtype) return ref_image_latents # from diffusers/examples/community/stable_diffusion_controlnet_reference.py def prepare_controlnet_ref_only_without_motion( self, ref_image_latents, batch_size, num_images_per_prompt, do_classifier_free_guidance, attention_auto_machine_weight, gn_auto_machine_weight, style_fidelity, reference_attn, reference_adain, _scale_pattern, region_num ): global C_REF_MODE # 9. Modify self attention and group norm C_REF_MODE = "write" uc_mask = ( torch.Tensor([1] * batch_size * num_images_per_prompt + [0] * batch_size * num_images_per_prompt * (region_num-1)) .type_as(ref_image_latents) .bool() ) _scale_pattern = _scale_pattern * (batch_size // len(_scale_pattern) + 1) _scale_pattern = _scale_pattern[:batch_size] _rev_pattern = [1-i for i in _scale_pattern] scale_pattern_double = torch.tensor(_scale_pattern*region_num).to(self.device, dtype=self.unet.dtype) rev_pattern_double = torch.tensor(_rev_pattern*region_num).to(self.device, dtype=self.unet.dtype) scale_pattern = torch.tensor(_scale_pattern).to(self.device, dtype=self.unet.dtype) rev_pattern = torch.tensor(_rev_pattern).to(self.device, dtype=self.unet.dtype) def hacked_basic_transformer_inner_forward( self, hidden_states: torch.FloatTensor, attention_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, timestep: Optional[torch.LongTensor] = None, cross_attention_kwargs: Dict[str, Any] = None, video_length=None, ): if self.use_ada_layer_norm: norm_hidden_states = self.norm1(hidden_states, timestep) else: norm_hidden_states = self.norm1(hidden_states) # 1. Self-Attention cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} if self.unet_use_cross_frame_attention: cross_attention_kwargs["video_length"] = video_length if self.only_cross_attention: attn_output = self.attn1( norm_hidden_states, encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, attention_mask=attention_mask, **cross_attention_kwargs, ) else: if C_REF_MODE == "write": self.bank.append(norm_hidden_states.detach().clone()) attn_output = self.attn1( norm_hidden_states, encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, attention_mask=attention_mask, **cross_attention_kwargs, ) if C_REF_MODE == "read": if attention_auto_machine_weight > self.attn_weight: attn_output_uc = self.attn1( norm_hidden_states, encoder_hidden_states=torch.cat([norm_hidden_states] + self.bank, dim=1), # attention_mask=attention_mask, **cross_attention_kwargs, ) if style_fidelity > 0: attn_output_c = attn_output_uc.clone() if do_classifier_free_guidance: attn_output_c[uc_mask] = self.attn1( norm_hidden_states[uc_mask], encoder_hidden_states=norm_hidden_states[uc_mask], **cross_attention_kwargs, ) attn_output = style_fidelity * attn_output_c + (1.0 - style_fidelity) * attn_output_uc else: attn_output = attn_output_uc attn_org = self.attn1( norm_hidden_states, encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, attention_mask=attention_mask, **cross_attention_kwargs, ) attn_output = scale_pattern_double[:,None,None] * attn_output + rev_pattern_double[:,None,None] * attn_org else: attn_output = self.attn1( norm_hidden_states, encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, attention_mask=attention_mask, **cross_attention_kwargs, ) self.bank.clear() hidden_states = attn_output + hidden_states if self.attn2 is not None: norm_hidden_states = ( self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states) ) # 2. Cross-Attention attn_output = self.attn2( norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=encoder_attention_mask, **cross_attention_kwargs, ) hidden_states = attn_output + hidden_states # 3. Feed-forward hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states # 4. Temporal-Attention if self.unet_use_temporal_attention: d = hidden_states.shape[1] hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length) norm_hidden_states = ( self.norm_temp(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_temp(hidden_states) ) hidden_states = self.attn_temp(norm_hidden_states) + hidden_states hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d) return hidden_states def hacked_mid_forward( self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, cross_attention_kwargs: Optional[Dict[str, Any]] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, ) -> torch.FloatTensor: eps = 1e-6 hidden_states = self.resnets[0](hidden_states, temb) for attn, resnet, motion_module in zip(self.attentions, self.resnets[1:], self.motion_modules): hidden_states = attn( hidden_states, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask, return_dict=False, )[0] x = hidden_states if C_REF_MODE == "write": if gn_auto_machine_weight >= self.gn_weight: var, mean = torch.var_mean(x, dim=(3, 4), keepdim=True, correction=0) self.mean_bank.append(mean) self.var_bank.append(var) if C_REF_MODE == "read": if len(self.mean_bank) > 0 and len(self.var_bank) > 0: var, mean = torch.var_mean(x, dim=(3, 4), keepdim=True, correction=0) std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5 mean_acc = sum(self.mean_bank) / float(len(self.mean_bank)) var_acc = sum(self.var_bank) / float(len(self.var_bank)) std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5 x_uc = (((x - mean) / std) * std_acc) + mean_acc x_c = x_uc.clone() if do_classifier_free_guidance and style_fidelity > 0: f = x.shape[2] x_c = rearrange(x_c, "b c f h w -> (b f) c h w") x = rearrange(x, "b c f h w -> (b f) c h w") x_c[uc_mask] = x[uc_mask] x_c = rearrange(x_c, "(b f) c h w -> b c f h w", f=f) x = rearrange(x, "(b f) c h w -> b c f h w", f=f) mod_x = style_fidelity * x_c + (1.0 - style_fidelity) * x_uc x = scale_pattern[None,None,:,None,None] * mod_x + rev_pattern[None,None,:,None,None] * x self.mean_bank = [] self.var_bank = [] hidden_states = x if motion_module is not None: hidden_states = motion_module( hidden_states, temb, encoder_hidden_states=encoder_hidden_states, ) hidden_states = resnet(hidden_states, temb) return hidden_states def hack_CrossAttnDownBlock3D_forward( self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, cross_attention_kwargs: Optional[Dict[str, Any]] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, ): eps = 1e-6 # TODO(Patrick, William) - attention mask is not used output_states = () for i, (resnet, attn, motion_module) in enumerate(zip(self.resnets, self.attentions, self.motion_modules)): hidden_states = resnet(hidden_states, temb) hidden_states = attn( hidden_states, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask, return_dict=False, )[0] if C_REF_MODE == "write": if gn_auto_machine_weight >= self.gn_weight: var, mean = torch.var_mean(hidden_states, dim=(3, 4), keepdim=True, correction=0) self.mean_bank.append([mean]) self.var_bank.append([var]) if C_REF_MODE == "read": if len(self.mean_bank) > 0 and len(self.var_bank) > 0: var, mean = torch.var_mean(hidden_states, dim=(3, 4), keepdim=True, correction=0) std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5 mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i])) var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i])) std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5 hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc hidden_states_c = hidden_states_uc.clone() if do_classifier_free_guidance and style_fidelity > 0: f = hidden_states.shape[2] hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") hidden_states_c = rearrange(hidden_states_c, "b c f h w -> (b f) c h w") hidden_states_c[uc_mask] = hidden_states[uc_mask] hidden_states = rearrange(hidden_states, "(b f) c h w -> b c f h w", f=f) hidden_states_c = rearrange(hidden_states_c, "(b f) c h w -> b c f h w", f=f) mod_hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc hidden_states = scale_pattern[None,None,:,None,None] * mod_hidden_states + rev_pattern[None,None,:,None,None] * hidden_states # add motion module hidden_states = ( motion_module(hidden_states, temb, encoder_hidden_states=encoder_hidden_states) if motion_module is not None else hidden_states ) output_states = output_states + (hidden_states,) if C_REF_MODE == "read": self.mean_bank = [] self.var_bank = [] if self.downsamplers is not None: for downsampler in self.downsamplers: hidden_states = downsampler(hidden_states) output_states = output_states + (hidden_states,) return hidden_states, output_states def hacked_DownBlock3D_forward(self, hidden_states, temb=None, encoder_hidden_states=None): eps = 1e-6 output_states = () for i, (resnet, motion_module) in enumerate(zip(self.resnets, self.motion_modules)): hidden_states = resnet(hidden_states, temb) if C_REF_MODE == "write": if gn_auto_machine_weight >= self.gn_weight: var, mean = torch.var_mean(hidden_states, dim=(3, 4), keepdim=True, correction=0) self.mean_bank.append([mean]) self.var_bank.append([var]) if C_REF_MODE == "read": if len(self.mean_bank) > 0 and len(self.var_bank) > 0: var, mean = torch.var_mean(hidden_states, dim=(3, 4), keepdim=True, correction=0) std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5 mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i])) var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i])) std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5 hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc hidden_states_c = hidden_states_uc.clone() if do_classifier_free_guidance and style_fidelity > 0: f = hidden_states.shape[2] hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") hidden_states_c = rearrange(hidden_states_c, "b c f h w -> (b f) c h w") hidden_states_c[uc_mask] = hidden_states[uc_mask] hidden_states = rearrange(hidden_states, "(b f) c h w -> b c f h w", f=f) hidden_states_c = rearrange(hidden_states_c, "(b f) c h w -> b c f h w", f=f) mod_hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc hidden_states = scale_pattern[None,None,:,None,None] * mod_hidden_states + rev_pattern[None,None,:,None,None] * hidden_states # add motion module if motion_module: hidden_states = motion_module( hidden_states, temb, encoder_hidden_states=encoder_hidden_states ) output_states = output_states + (hidden_states,) if C_REF_MODE == "read": self.mean_bank = [] self.var_bank = [] if self.downsamplers is not None: for downsampler in self.downsamplers: hidden_states = downsampler(hidden_states) output_states = output_states + (hidden_states,) return hidden_states, output_states def hacked_CrossAttnUpBlock3D_forward( self, hidden_states: torch.FloatTensor, res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], temb: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, cross_attention_kwargs: Optional[Dict[str, Any]] = None, upsample_size: Optional[int] = None, attention_mask: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, ): eps = 1e-6 # TODO(Patrick, William) - attention mask is not used for i, (resnet, attn, motion_module) in enumerate(zip(self.resnets, self.attentions, self.motion_modules)): # pop res hidden states res_hidden_states = res_hidden_states_tuple[-1] res_hidden_states_tuple = res_hidden_states_tuple[:-1] hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) hidden_states = resnet(hidden_states, temb) hidden_states = attn( hidden_states, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask, return_dict=False, )[0] if C_REF_MODE == "write": if gn_auto_machine_weight >= self.gn_weight: var, mean = torch.var_mean(hidden_states, dim=(3, 4), keepdim=True, correction=0) self.mean_bank.append([mean]) self.var_bank.append([var]) if C_REF_MODE == "read": if len(self.mean_bank) > 0 and len(self.var_bank) > 0: var, mean = torch.var_mean(hidden_states, dim=(3, 4), keepdim=True, correction=0) std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5 mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i])) var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i])) std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5 hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc hidden_states_c = hidden_states_uc.clone() if do_classifier_free_guidance and style_fidelity > 0: f = hidden_states.shape[2] hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") hidden_states_c = rearrange(hidden_states_c, "b c f h w -> (b f) c h w") hidden_states_c[uc_mask] = hidden_states[uc_mask] hidden_states = rearrange(hidden_states, "(b f) c h w -> b c f h w", f=f) hidden_states_c = rearrange(hidden_states_c, "(b f) c h w -> b c f h w", f=f) mod_hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc hidden_states = scale_pattern[None,None,:,None,None] * mod_hidden_states + rev_pattern[None,None,:,None,None] * hidden_states # add motion module if motion_module: hidden_states = motion_module( hidden_states, temb, encoder_hidden_states=encoder_hidden_states ) if C_REF_MODE == "read": self.mean_bank = [] self.var_bank = [] if self.upsamplers is not None: for upsampler in self.upsamplers: hidden_states = upsampler(hidden_states, upsample_size) return hidden_states def hacked_UpBlock3D_forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None, encoder_hidden_states=None): eps = 1e-6 for i, (resnet,motion_module) in enumerate(zip(self.resnets, self.motion_modules)): # pop res hidden states res_hidden_states = res_hidden_states_tuple[-1] res_hidden_states_tuple = res_hidden_states_tuple[:-1] hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) hidden_states = resnet(hidden_states, temb) if C_REF_MODE == "write": if gn_auto_machine_weight >= self.gn_weight: var, mean = torch.var_mean(hidden_states, dim=(3, 4), keepdim=True, correction=0) self.mean_bank.append([mean]) self.var_bank.append([var]) if C_REF_MODE == "read": if len(self.mean_bank) > 0 and len(self.var_bank) > 0: var, mean = torch.var_mean(hidden_states, dim=(3, 4), keepdim=True, correction=0) std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5 mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i])) var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i])) std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5 hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc hidden_states_c = hidden_states_uc.clone() if do_classifier_free_guidance and style_fidelity > 0: f = hidden_states.shape[2] hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") hidden_states_c = rearrange(hidden_states_c, "b c f h w -> (b f) c h w") hidden_states_c[uc_mask] = hidden_states[uc_mask] hidden_states = rearrange(hidden_states, "(b f) c h w -> b c f h w", f=f) hidden_states_c = rearrange(hidden_states_c, "(b f) c h w -> b c f h w", f=f) mod_hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc hidden_states = scale_pattern[None,None,:,None,None] * mod_hidden_states + rev_pattern[None,None,:,None,None] * hidden_states if motion_module: hidden_states = motion_module( hidden_states, temb, encoder_hidden_states=encoder_hidden_states ) if C_REF_MODE == "read": self.mean_bank = [] self.var_bank = [] if self.upsamplers is not None: for upsampler in self.upsamplers: hidden_states = upsampler(hidden_states, upsample_size) return hidden_states if reference_attn: attn_modules = [module for module in torch_dfs(self.unet) if isinstance(module, BasicTransformerBlock)] attn_modules = sorted(attn_modules, key=lambda x: -x.norm1.normalized_shape[0]) for i, module in enumerate(attn_modules): module._original_inner_forward = module.forward module.forward = hacked_basic_transformer_inner_forward.__get__(module, BasicTransformerBlock) module.bank = [] module.attn_weight = float(i) / float(len(attn_modules)) attn_modules = None torch.cuda.empty_cache() if reference_adain: gn_modules = [self.unet.mid_block] self.unet.mid_block.gn_weight = 0 down_blocks = self.unet.down_blocks for w, module in enumerate(down_blocks): module.gn_weight = 1.0 - float(w) / float(len(down_blocks)) gn_modules.append(module) up_blocks = self.unet.up_blocks for w, module in enumerate(up_blocks): module.gn_weight = float(w) / float(len(up_blocks)) gn_modules.append(module) for i, module in enumerate(gn_modules): if getattr(module, "original_forward", None) is None: module.original_forward = module.forward if i == 0: # mid_block module.forward = hacked_mid_forward.__get__(module, UNetMidBlock3DCrossAttn) elif isinstance(module, CrossAttnDownBlock3D): module.forward = hack_CrossAttnDownBlock3D_forward.__get__(module, CrossAttnDownBlock3D) elif isinstance(module, DownBlock3D): module.forward = hacked_DownBlock3D_forward.__get__(module, DownBlock3D) elif isinstance(module, CrossAttnUpBlock3D): module.forward = hacked_CrossAttnUpBlock3D_forward.__get__(module, CrossAttnUpBlock3D) elif isinstance(module, UpBlock3D): module.forward = hacked_UpBlock3D_forward.__get__(module, UpBlock3D) module.mean_bank = [] module.var_bank = [] module.gn_weight *= 2 gn_modules = None torch.cuda.empty_cache() # from diffusers/examples/community/stable_diffusion_controlnet_reference.py def prepare_controlnet_ref_only( self, ref_image_latents, batch_size, num_images_per_prompt, do_classifier_free_guidance, attention_auto_machine_weight, gn_auto_machine_weight, style_fidelity, reference_attn, reference_adain, _scale_pattern, ): global C_REF_MODE # 9. Modify self attention and group norm C_REF_MODE = "write" uc_mask = ( torch.Tensor([1] * batch_size * num_images_per_prompt + [0] * batch_size * num_images_per_prompt) .type_as(ref_image_latents) .bool() ) _scale_pattern = _scale_pattern * (batch_size // len(_scale_pattern) + 1) _scale_pattern = _scale_pattern[:batch_size] _rev_pattern = [1-i for i in _scale_pattern] scale_pattern_double = torch.tensor(_scale_pattern*2).to(self.device, dtype=self.unet.dtype) rev_pattern_double = torch.tensor(_rev_pattern*2).to(self.device, dtype=self.unet.dtype) scale_pattern = torch.tensor(_scale_pattern).to(self.device, dtype=self.unet.dtype) rev_pattern = torch.tensor(_rev_pattern).to(self.device, dtype=self.unet.dtype) def hacked_basic_transformer_inner_forward( self, hidden_states: torch.FloatTensor, attention_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, timestep: Optional[torch.LongTensor] = None, cross_attention_kwargs: Dict[str, Any] = None, video_length=None, ): if self.use_ada_layer_norm: norm_hidden_states = self.norm1(hidden_states, timestep) else: norm_hidden_states = self.norm1(hidden_states) # 1. Self-Attention cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} if self.unet_use_cross_frame_attention: cross_attention_kwargs["video_length"] = video_length if self.only_cross_attention: attn_output = self.attn1( norm_hidden_states, encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, attention_mask=attention_mask, **cross_attention_kwargs, ) else: if C_REF_MODE == "write": self.bank.append(norm_hidden_states.detach().clone()) attn_output = self.attn1( norm_hidden_states, encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, attention_mask=attention_mask, **cross_attention_kwargs, ) if C_REF_MODE == "read": if attention_auto_machine_weight > self.attn_weight: attn_output_uc = self.attn1( norm_hidden_states, encoder_hidden_states=torch.cat([norm_hidden_states] + self.bank, dim=1), # attention_mask=attention_mask, **cross_attention_kwargs, ) if style_fidelity > 0: attn_output_c = attn_output_uc.clone() if do_classifier_free_guidance: attn_output_c[uc_mask] = self.attn1( norm_hidden_states[uc_mask], encoder_hidden_states=norm_hidden_states[uc_mask], **cross_attention_kwargs, ) attn_output = style_fidelity * attn_output_c + (1.0 - style_fidelity) * attn_output_uc else: attn_output = attn_output_uc attn_org = self.attn1( norm_hidden_states, encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, attention_mask=attention_mask, **cross_attention_kwargs, ) attn_output = scale_pattern_double[:,None,None] * attn_output + rev_pattern_double[:,None,None] * attn_org else: attn_output = self.attn1( norm_hidden_states, encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, attention_mask=attention_mask, **cross_attention_kwargs, ) self.bank.clear() hidden_states = attn_output + hidden_states if self.attn2 is not None: norm_hidden_states = ( self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states) ) # 2. Cross-Attention attn_output = self.attn2( norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=encoder_attention_mask, **cross_attention_kwargs, ) hidden_states = attn_output + hidden_states # 3. Feed-forward hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states # 4. Temporal-Attention if self.unet_use_temporal_attention: d = hidden_states.shape[1] hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length) norm_hidden_states = ( self.norm_temp(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_temp(hidden_states) ) hidden_states = self.attn_temp(norm_hidden_states) + hidden_states hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d) return hidden_states def hacked_mid_forward( self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, cross_attention_kwargs: Optional[Dict[str, Any]] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, ) -> torch.FloatTensor: eps = 1e-6 hidden_states = self.resnets[0](hidden_states, temb) for attn, resnet, motion_module in zip(self.attentions, self.resnets[1:], self.motion_modules): hidden_states = attn( hidden_states, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask, return_dict=False, )[0] if motion_module is not None: hidden_states = motion_module( hidden_states, temb, encoder_hidden_states=encoder_hidden_states, ) hidden_states = resnet(hidden_states, temb) x = hidden_states if C_REF_MODE == "write": if gn_auto_machine_weight >= self.gn_weight: var, mean = torch.var_mean(x, dim=(3, 4), keepdim=True, correction=0) self.mean_bank.append(mean) self.var_bank.append(var) if C_REF_MODE == "read": if len(self.mean_bank) > 0 and len(self.var_bank) > 0: var, mean = torch.var_mean(x, dim=(3, 4), keepdim=True, correction=0) std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5 mean_acc = sum(self.mean_bank) / float(len(self.mean_bank)) var_acc = sum(self.var_bank) / float(len(self.var_bank)) std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5 x_uc = (((x - mean) / std) * std_acc) + mean_acc x_c = x_uc.clone() if do_classifier_free_guidance and style_fidelity > 0: f = x.shape[2] x_c = rearrange(x_c, "b c f h w -> (b f) c h w") x = rearrange(x, "b c f h w -> (b f) c h w") x_c[uc_mask] = x[uc_mask] x_c = rearrange(x_c, "(b f) c h w -> b c f h w", f=f) x = rearrange(x, "(b f) c h w -> b c f h w", f=f) mod_x = style_fidelity * x_c + (1.0 - style_fidelity) * x_uc x = scale_pattern[None,None,:,None,None] * mod_x + rev_pattern[None,None,:,None,None] * x self.mean_bank = [] self.var_bank = [] hidden_states = x return hidden_states def hack_CrossAttnDownBlock3D_forward( self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, cross_attention_kwargs: Optional[Dict[str, Any]] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, ): eps = 1e-6 # TODO(Patrick, William) - attention mask is not used output_states = () for i, (resnet, attn, motion_module) in enumerate(zip(self.resnets, self.attentions, self.motion_modules)): hidden_states = resnet(hidden_states, temb) hidden_states = attn( hidden_states, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask, return_dict=False, )[0] # add motion module hidden_states = ( motion_module(hidden_states, temb, encoder_hidden_states=encoder_hidden_states) if motion_module is not None else hidden_states ) if C_REF_MODE == "write": if gn_auto_machine_weight >= self.gn_weight: var, mean = torch.var_mean(hidden_states, dim=(3, 4), keepdim=True, correction=0) self.mean_bank.append([mean]) self.var_bank.append([var]) if C_REF_MODE == "read": if len(self.mean_bank) > 0 and len(self.var_bank) > 0: var, mean = torch.var_mean(hidden_states, dim=(3, 4), keepdim=True, correction=0) std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5 mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i])) var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i])) std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5 hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc hidden_states_c = hidden_states_uc.clone() if do_classifier_free_guidance and style_fidelity > 0: f = hidden_states.shape[2] hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") hidden_states_c = rearrange(hidden_states_c, "b c f h w -> (b f) c h w") hidden_states_c[uc_mask] = hidden_states[uc_mask] hidden_states = rearrange(hidden_states, "(b f) c h w -> b c f h w", f=f) hidden_states_c = rearrange(hidden_states_c, "(b f) c h w -> b c f h w", f=f) mod_hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc hidden_states = scale_pattern[None,None,:,None,None] * mod_hidden_states + rev_pattern[None,None,:,None,None] * hidden_states output_states = output_states + (hidden_states,) if C_REF_MODE == "read": self.mean_bank = [] self.var_bank = [] if self.downsamplers is not None: for downsampler in self.downsamplers: hidden_states = downsampler(hidden_states) output_states = output_states + (hidden_states,) return hidden_states, output_states def hacked_DownBlock3D_forward(self, hidden_states, temb=None, encoder_hidden_states=None): eps = 1e-6 output_states = () for i, (resnet, motion_module) in enumerate(zip(self.resnets, self.motion_modules)): hidden_states = resnet(hidden_states, temb) # add motion module if motion_module: hidden_states = motion_module( hidden_states, temb, encoder_hidden_states=encoder_hidden_states ) if C_REF_MODE == "write": if gn_auto_machine_weight >= self.gn_weight: var, mean = torch.var_mean(hidden_states, dim=(3, 4), keepdim=True, correction=0) self.mean_bank.append([mean]) self.var_bank.append([var]) if C_REF_MODE == "read": if len(self.mean_bank) > 0 and len(self.var_bank) > 0: var, mean = torch.var_mean(hidden_states, dim=(3, 4), keepdim=True, correction=0) std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5 mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i])) var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i])) std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5 hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc hidden_states_c = hidden_states_uc.clone() if do_classifier_free_guidance and style_fidelity > 0: f = hidden_states.shape[2] hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") hidden_states_c = rearrange(hidden_states_c, "b c f h w -> (b f) c h w") hidden_states_c[uc_mask] = hidden_states[uc_mask] hidden_states = rearrange(hidden_states, "(b f) c h w -> b c f h w", f=f) hidden_states_c = rearrange(hidden_states_c, "(b f) c h w -> b c f h w", f=f) mod_hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc hidden_states = scale_pattern[None,None,:,None,None] * mod_hidden_states + rev_pattern[None,None,:,None,None] * hidden_states output_states = output_states + (hidden_states,) if C_REF_MODE == "read": self.mean_bank = [] self.var_bank = [] if self.downsamplers is not None: for downsampler in self.downsamplers: hidden_states = downsampler(hidden_states) output_states = output_states + (hidden_states,) return hidden_states, output_states def hacked_CrossAttnUpBlock3D_forward( self, hidden_states: torch.FloatTensor, res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], temb: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, cross_attention_kwargs: Optional[Dict[str, Any]] = None, upsample_size: Optional[int] = None, attention_mask: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, ): eps = 1e-6 # TODO(Patrick, William) - attention mask is not used for i, (resnet, attn, motion_module) in enumerate(zip(self.resnets, self.attentions, self.motion_modules)): # pop res hidden states res_hidden_states = res_hidden_states_tuple[-1] res_hidden_states_tuple = res_hidden_states_tuple[:-1] hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) hidden_states = resnet(hidden_states, temb) hidden_states = attn( hidden_states, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask, return_dict=False, )[0] # add motion module if motion_module: hidden_states = motion_module( hidden_states, temb, encoder_hidden_states=encoder_hidden_states ) if C_REF_MODE == "write": if gn_auto_machine_weight >= self.gn_weight: var, mean = torch.var_mean(hidden_states, dim=(3, 4), keepdim=True, correction=0) self.mean_bank.append([mean]) self.var_bank.append([var]) if C_REF_MODE == "read": if len(self.mean_bank) > 0 and len(self.var_bank) > 0: var, mean = torch.var_mean(hidden_states, dim=(3, 4), keepdim=True, correction=0) std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5 mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i])) var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i])) std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5 hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc hidden_states_c = hidden_states_uc.clone() if do_classifier_free_guidance and style_fidelity > 0: f = hidden_states.shape[2] hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") hidden_states_c = rearrange(hidden_states_c, "b c f h w -> (b f) c h w") hidden_states_c[uc_mask] = hidden_states[uc_mask] hidden_states = rearrange(hidden_states, "(b f) c h w -> b c f h w", f=f) hidden_states_c = rearrange(hidden_states_c, "(b f) c h w -> b c f h w", f=f) mod_hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc hidden_states = scale_pattern[None,None,:,None,None] * mod_hidden_states + rev_pattern[None,None,:,None,None] * hidden_states if C_REF_MODE == "read": self.mean_bank = [] self.var_bank = [] if self.upsamplers is not None: for upsampler in self.upsamplers: hidden_states = upsampler(hidden_states, upsample_size) return hidden_states def hacked_UpBlock3D_forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None, encoder_hidden_states=None): eps = 1e-6 for i, (resnet,motion_module) in enumerate(zip(self.resnets, self.motion_modules)): # pop res hidden states res_hidden_states = res_hidden_states_tuple[-1] res_hidden_states_tuple = res_hidden_states_tuple[:-1] hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) hidden_states = resnet(hidden_states, temb) if motion_module: hidden_states = motion_module( hidden_states, temb, encoder_hidden_states=encoder_hidden_states ) if C_REF_MODE == "write": if gn_auto_machine_weight >= self.gn_weight: var, mean = torch.var_mean(hidden_states, dim=(3, 4), keepdim=True, correction=0) self.mean_bank.append([mean]) self.var_bank.append([var]) if C_REF_MODE == "read": if len(self.mean_bank) > 0 and len(self.var_bank) > 0: var, mean = torch.var_mean(hidden_states, dim=(3, 4), keepdim=True, correction=0) std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5 mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i])) var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i])) std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5 hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc hidden_states_c = hidden_states_uc.clone() if do_classifier_free_guidance and style_fidelity > 0: f = hidden_states.shape[2] hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") hidden_states_c = rearrange(hidden_states_c, "b c f h w -> (b f) c h w") hidden_states_c[uc_mask] = hidden_states[uc_mask] hidden_states = rearrange(hidden_states, "(b f) c h w -> b c f h w", f=f) hidden_states_c = rearrange(hidden_states_c, "(b f) c h w -> b c f h w", f=f) mod_hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc hidden_states = scale_pattern[None,None,:,None,None] * mod_hidden_states + rev_pattern[None,None,:,None,None] * hidden_states if C_REF_MODE == "read": self.mean_bank = [] self.var_bank = [] if self.upsamplers is not None: for upsampler in self.upsamplers: hidden_states = upsampler(hidden_states, upsample_size) return hidden_states if reference_attn: attn_modules = [module for module in torch_dfs(self.unet) if isinstance(module, BasicTransformerBlock)] attn_modules = sorted(attn_modules, key=lambda x: -x.norm1.normalized_shape[0]) for i, module in enumerate(attn_modules): module._original_inner_forward = module.forward module.forward = hacked_basic_transformer_inner_forward.__get__(module, BasicTransformerBlock) module.bank = [] module.attn_weight = float(i) / float(len(attn_modules)) attn_modules = None torch.cuda.empty_cache() if reference_adain: gn_modules = [self.unet.mid_block] self.unet.mid_block.gn_weight = 0 down_blocks = self.unet.down_blocks for w, module in enumerate(down_blocks): module.gn_weight = 1.0 - float(w) / float(len(down_blocks)) gn_modules.append(module) up_blocks = self.unet.up_blocks for w, module in enumerate(up_blocks): module.gn_weight = float(w) / float(len(up_blocks)) gn_modules.append(module) for i, module in enumerate(gn_modules): if getattr(module, "original_forward", None) is None: module.original_forward = module.forward if i == 0: # mid_block module.forward = hacked_mid_forward.__get__(module, UNetMidBlock3DCrossAttn) elif isinstance(module, CrossAttnDownBlock3D): module.forward = hack_CrossAttnDownBlock3D_forward.__get__(module, CrossAttnDownBlock3D) elif isinstance(module, DownBlock3D): module.forward = hacked_DownBlock3D_forward.__get__(module, DownBlock3D) elif isinstance(module, CrossAttnUpBlock3D): module.forward = hacked_CrossAttnUpBlock3D_forward.__get__(module, CrossAttnUpBlock3D) elif isinstance(module, UpBlock3D): module.forward = hacked_UpBlock3D_forward.__get__(module, UpBlock3D) module.mean_bank = [] module.var_bank = [] module.gn_weight *= 2 gn_modules = None torch.cuda.empty_cache() def unload_controlnet_ref_only( self, reference_attn, reference_adain, ): if reference_attn: attn_modules = [module for module in torch_dfs(self.unet) if isinstance(module, BasicTransformerBlock)] attn_modules = sorted(attn_modules, key=lambda x: -x.norm1.normalized_shape[0]) for i, module in enumerate(attn_modules): module.forward = module._original_inner_forward module.bank = [] attn_modules = None torch.cuda.empty_cache() if reference_adain: gn_modules = [self.unet.mid_block] self.unet.mid_block.gn_weight = 0 down_blocks = self.unet.down_blocks for w, module in enumerate(down_blocks): module.gn_weight = 1.0 - float(w) / float(len(down_blocks)) gn_modules.append(module) up_blocks = self.unet.up_blocks for w, module in enumerate(up_blocks): module.gn_weight = float(w) / float(len(up_blocks)) gn_modules.append(module) for i, module in enumerate(gn_modules): module.forward = module.original_forward module.mean_bank = [] module.var_bank = [] module.gn_weight *= 2 gn_modules = None torch.cuda.empty_cache() def get_img2img_timesteps(self, num_inference_steps, strength, device): strength = min(1, max(0,strength)) # get the original timestep using init_timestep init_timestep = min(int(num_inference_steps * strength), num_inference_steps) t_start = max(num_inference_steps - init_timestep, 0) timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] return timesteps, num_inference_steps - t_start @torch.no_grad() def __call__( self, height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 50, guidance_scale: float = 7.5, unet_batch_size: int = 1, negative_prompt: Optional[Union[str, List[str]]] = None, video_length: Optional[int] = None, num_videos_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, output_type: Optional[str] = "tensor", return_dict: bool = True, callback: Optional[Callable[[int, torch.FloatTensor], None]] = None, callback_steps: Optional[List[int]] = None, cross_attention_kwargs: Optional[Dict[str, Any]] = None, context_frames: int = -1, context_stride: int = 3, context_overlap: int = 4, context_schedule: str = "uniform", clip_skip: int = 1, controlnet_type_map: Dict[str, Dict[str,float]] = None, controlnet_image_map: Dict[int, Dict[str,Any]] = None, controlnet_ref_map: Dict[str, Any] = None, controlnet_no_shrink:List[str]=None, controlnet_max_samples_on_vram: int = 999, controlnet_max_models_on_vram: int=99, controlnet_is_loop: bool=True, img2img_map: Dict[str, Any] = None, ip_adapter_config_map: Dict[str,Any] = None, region_list: List[Any] = None, region_condi_list: List[Any] = None, interpolation_factor = 1, is_single_prompt_mode = False, apply_lcm_lora= False, gradual_latent_map=None, **kwargs, ): import gc global C_REF_MODE gradual_latent = False if gradual_latent_map: gradual_latent = gradual_latent_map["enable"] logger.info(f"{apply_lcm_lora=}") if apply_lcm_lora: self.scheduler = LCMScheduler.from_config(self.scheduler.config) controlnet_image_map_org = controlnet_image_map controlnet_max_models_on_vram = max(controlnet_max_models_on_vram,0) # Default height and width to unet height = height or self.unet.config.sample_size * self.vae_scale_factor width = width or self.unet.config.sample_size * self.vae_scale_factor sequential_mode = video_length is not None and video_length > context_frames multi_uncond_mode = self.lora_map is not None controlnet_for_region = False if controlnet_type_map: for c in controlnet_type_map: reg_list = controlnet_type_map[c]["control_region_list"] if reg_list: controlnet_for_region = True break if controlnet_for_region or multi_uncond_mode: controlnet_for_region = True multi_uncond_mode = True unet_batch_size = 1 logger.info(f"{controlnet_for_region=}") logger.info(f"{multi_uncond_mode=}") logger.info(f"{unet_batch_size=}") # 1. Check inputs. Raise error if not correct self.check_inputs( "dummy string", height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds ) # Define call parameters batch_size = 1 device = self._execution_device latents_device = torch.device("cpu") if sequential_mode else device if ip_adapter_config_map: if self.ip_adapter is None: img_enc_path = "data/models/ip_adapter/models/image_encoder/" if ip_adapter_config_map["is_full_face"]: self.ip_adapter = IPAdapterFull(self, img_enc_path, "data/models/ip_adapter/models/ip-adapter-full-face_sd15.bin", device, 257) elif ip_adapter_config_map["is_light"]: self.ip_adapter = IPAdapter(self, img_enc_path, "data/models/ip_adapter/models/ip-adapter_sd15_light.bin", device, 4) elif ip_adapter_config_map["is_plus_face"]: self.ip_adapter = IPAdapterPlus(self, img_enc_path, "data/models/ip_adapter/models/ip-adapter-plus-face_sd15.bin", device, 16) elif ip_adapter_config_map["is_plus"]: self.ip_adapter = IPAdapterPlus(self, img_enc_path, "data/models/ip_adapter/models/ip-adapter-plus_sd15.bin", device, 16) else: self.ip_adapter = IPAdapter(self, img_enc_path, "data/models/ip_adapter/models/ip-adapter_sd15.bin", device, 4) self.ip_adapter.set_scale( ip_adapter_config_map["scale"] ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # 3. Encode input prompt text_encoder_lora_scale = ( cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None ) prompt_encoder = PromptEncoder( self, device, device,#latents_device, num_videos_per_prompt, do_classifier_free_guidance, region_condi_list, negative_prompt, is_single_prompt_mode, clip_skip, multi_uncond_mode ) if self.ip_adapter: self.ip_adapter.delete_encoder() if controlnet_ref_map is not None: if unet_batch_size < prompt_encoder.get_condi_size(): raise ValueError(f"controlnet_ref is not available in this configuration. {unet_batch_size=} < {prompt_encoder.get_condi_size()}") if multi_uncond_mode: raise ValueError(f"controlnet_ref is not available in this configuration. {multi_uncond_mode=}") logger.info(f"{prompt_encoder.get_condi_size()=}") # 3.5 Prepare controlnet variables if self.controlnet_map: for i, type_str in enumerate(self.controlnet_map): if i < controlnet_max_models_on_vram: self.controlnet_map[type_str].to(device=device, non_blocking=True) # controlnet_image_map # { 0 : { "type_str" : IMAGE, "type_str2" : IMAGE } } # { "type_str" : { 0 : IMAGE, 15 : IMAGE } } controlnet_image_map= None if controlnet_image_map_org: controlnet_image_map= {key: {} for key in controlnet_type_map} for key_frame_no in controlnet_image_map_org: for t, img in controlnet_image_map_org[key_frame_no].items(): tmp = self.prepare_image( image=img, width=width, height=height, batch_size=1 * 1, num_images_per_prompt=1, #device=device, device=latents_device, dtype=self.controlnet_map[t].dtype, do_classifier_free_guidance=False, guess_mode=False, ) controlnet_image_map[t][key_frame_no] = torch.cat([tmp] * prompt_encoder.get_condi_size()) del controlnet_image_map_org torch.cuda.empty_cache() # { "0_type_str" : { "scales" = [0.1, 0.3, 0.5, 1.0, 0.5, 0.3, 0.1], "frames"=[125, 126, 127, 0, 1, 2, 3] }} controlnet_scale_map = {} controlnet_affected_list = np.zeros(video_length,dtype = int) is_v2v = True if controlnet_image_map: for type_str in controlnet_image_map: for key_frame_no in controlnet_image_map[type_str]: scale_list = controlnet_type_map[type_str]["control_scale_list"] if len(scale_list) > 0: is_v2v = False scale_list = scale_list[0: context_frames] scale_len = len(scale_list) if controlnet_is_loop: frames = [ i%video_length for i in range(key_frame_no-scale_len, key_frame_no+scale_len+1)] controlnet_scale_map[str(key_frame_no) + "_" + type_str] = { "scales" : scale_list[::-1] + [1.0] + scale_list, "frames" : frames, } else: frames = [ i for i in range(max(0, key_frame_no-scale_len), min(key_frame_no+scale_len+1, video_length))] controlnet_scale_map[str(key_frame_no) + "_" + type_str] = { "scales" : scale_list[:key_frame_no][::-1] + [1.0] + scale_list[:video_length-key_frame_no-1], "frames" : frames, } controlnet_affected_list[frames] = 1 def controlnet_is_affected( frame_index:int): return controlnet_affected_list[frame_index] def get_controlnet_scale( type: str, cur_step: int, step_length: int, ): s = controlnet_type_map[type]["control_guidance_start"] e = controlnet_type_map[type]["control_guidance_end"] keep = 1.0 - float(cur_step / len(timesteps) < s or (cur_step + 1) / step_length > e) scale = controlnet_type_map[type]["controlnet_conditioning_scale"] return keep * scale def get_controlnet_variable( type_str: str, cur_step: int, step_length: int, target_frames: List[int], ): cont_vars = [] if not controlnet_image_map: return None if type_str not in controlnet_image_map: return None for fr, img in controlnet_image_map[type_str].items(): if fr in target_frames: cont_vars.append( { "frame_no" : fr, "image" : img, "cond_scale" : get_controlnet_scale(type_str, cur_step, step_length), "guess_mode" : controlnet_type_map[type_str]["guess_mode"] } ) return cont_vars # 3.9. Preprocess reference image c_ref_enable = controlnet_ref_map is not None if c_ref_enable: ref_image = controlnet_ref_map["ref_image"] ref_image = self.prepare_ref_image( image=ref_image, width=width, height=height, batch_size=1 * 1, num_images_per_prompt=1, device=device, dtype=prompt_encoder.get_prompt_embeds_dtype(), ) # 4. Prepare timesteps self.scheduler.set_timesteps(num_inference_steps, device=latents_device) if img2img_map: timesteps, num_inference_steps = self.get_img2img_timesteps(num_inference_steps, img2img_map["denoising_strength"], latents_device) latent_timestep = timesteps[:1].repeat(batch_size * 1) else: timesteps = self.scheduler.timesteps latent_timestep = None is_strength_max = True if img2img_map: is_strength_max = img2img_map["denoising_strength"] == 1.0 # 5. Prepare latent variables num_channels_latents = self.unet.config.in_channels latents_outputs = self.prepare_latents( batch_size * num_videos_per_prompt, num_channels_latents, video_length, height, width, prompt_encoder.get_prompt_embeds_dtype(), latents_device, # keep latents on cpu for sequential mode generator, img2img_map, latent_timestep, latents, is_strength_max, True, True, ) latents, noise, image_latents = latents_outputs del img2img_map torch.cuda.empty_cache() gc.collect() # 5.5 Prepare region mask region_mask = RegionMask( region_list, batch_size, num_channels_latents, video_length, height, width, self.vae_scale_factor, prompt_encoder.get_prompt_embeds_dtype(), latents_device, multi_uncond_mode ) torch.cuda.empty_cache() # 5.9. Prepare reference latent variables if c_ref_enable: ref_image_latents = self.prepare_ref_latents( ref_image, context_frames * 1, prompt_encoder.get_prompt_embeds_dtype(), device, generator, do_classifier_free_guidance=False, ) ref_image_latents = torch.cat([ref_image_latents] * prompt_encoder.get_condi_size()) ref_image_latents = rearrange(ref_image_latents, "(b f) c h w -> b c f h w", f=context_frames) # 5.99. Modify self attention and group norm # self.prepare_controlnet_ref_only( self.prepare_controlnet_ref_only_without_motion( ref_image_latents=ref_image_latents, batch_size=context_frames, num_images_per_prompt=1, do_classifier_free_guidance=do_classifier_free_guidance, attention_auto_machine_weight=controlnet_ref_map["attention_auto_machine_weight"], gn_auto_machine_weight=controlnet_ref_map["gn_auto_machine_weight"], style_fidelity=controlnet_ref_map["style_fidelity"], reference_attn=controlnet_ref_map["reference_attn"], reference_adain=controlnet_ref_map["reference_adain"], _scale_pattern=controlnet_ref_map["scale_pattern"], region_num = prompt_encoder.get_condi_size() ) # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 6.5 - Infinite context loop shenanigans context_scheduler = get_context_scheduler(context_schedule) total_steps = get_total_steps( context_scheduler, timesteps, num_inference_steps, latents.shape[2], context_frames, context_stride, context_overlap, ) lat_height, lat_width = latents.shape[-2:] def gradual_latent_scale(progress): if gradual_latent: cur = 0.5 for s in gradual_latent_map["scale"]: v = gradual_latent_map["scale"][s] if float(s) > progress: return cur cur = v return cur else: return 1.0 def gradual_latent_size(progress): if gradual_latent: current_ratio = gradual_latent_scale(progress) h = int(lat_height * current_ratio) w = int(lat_width * current_ratio) return (h,w) else: return (lat_height, lat_width) def unsharp_mask(img): imgf = img.float() k = 0.05 # strength kernel = torch.FloatTensor([[0, -k, 0], [-k, 1+4*k, -k], [0, -k, 0]]) conv_kernel = torch.eye(4)[..., None, None] * kernel[None, None, ...] imgf = torch.nn.functional.conv2d(imgf, conv_kernel.to(img.device), padding=1) return imgf.to(img.dtype) def resize_tensor(ten, size, do_unsharp_mask=False): ten = rearrange(ten, "b c f h w -> (b f) c h w") ten = torch.nn.functional.interpolate( ten.float(), size=size, mode="bicubic", align_corners=False ).to(ten.dtype) if do_unsharp_mask: ten = unsharp_mask(ten) return rearrange(ten, "(b f) c h w -> b c f h w", f=video_length) if gradual_latent: latents = resize_tensor(latents, gradual_latent_size(0)) reverse_steps = gradual_latent_map["reverse_steps"] noise_add_count = gradual_latent_map["noise_add_count"] total_steps = ((total_steps/num_inference_steps) * (reverse_steps* (len(gradual_latent_map["scale"].keys()) - 1) )) + total_steps total_steps = int(total_steps) prev_gradient_latent_size = gradual_latent_size(0) shrink_controlnet = True no_shrink_type = controlnet_no_shrink if controlnet_type_map: for nt in no_shrink_type: if nt in controlnet_type_map: controlnet_type_map[nt] = controlnet_type_map.pop(nt) def need_region_blend(cur_step, total_steps): if cur_step + 1 == total_steps: return True if multi_uncond_mode == False: return True return cur_step % 2 == 1 # 7. Denoising loop num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order with self.progress_bar(total=total_steps) as progress_bar: i = 0 real_i = 0 # for i, t in enumerate(timesteps): while i < len(timesteps): t = timesteps[i] stopwatch_start() cur_gradient_latent_size = gradual_latent_size((real_i+1) / len(timesteps)) if self.lcm: self.lcm.apply(i, len(timesteps)) noise_pred = torch.zeros( (prompt_encoder.get_condi_size(), *latents.shape[1:]), device=latents.device, dtype=latents.dtype, ) counter = torch.zeros( (1, 1, latents.shape[2], 1, 1), device=latents.device, dtype=latents.dtype ) # { "0_type_str" : (down_samples, mid_sample) } controlnet_result={} def scale_5d_tensor(ten, h, w, f): ten = rearrange(ten, "b c f h w -> (b f) c h w") ten = torch.nn.functional.interpolate( ten, size=(h, w), mode="bicubic", align_corners=False ) return rearrange(ten, "(b f) c h w -> b c f h w", f=f) def get_controlnet_result(context: List[int] = None, layer:int = -1): #logger.info(f"get_controlnet_result called {context=}") if controlnet_image_map is None: return None, None hit = False for n in context: if controlnet_is_affected(n): hit=True break if hit == False: return None, None def is_control_layer(type_str, layer): if layer == -1: return True region_list = controlnet_type_map[type_str]["control_region_list"] if not region_list: return True r = region_mask.get_region_from_layer(layer, prompt_encoder.get_condi_size()) if r == -1: return False return r in region_list def to_device(sample, target_device): down_samples = [ v.to(device = target_device, non_blocking=True) if v.device != target_device else v for v in sample[0] ] mid_sample = sample[1].to(device = target_device, non_blocking=True) if sample[1].device != target_device else sample[1] return (down_samples, mid_sample) _down_block_res_samples=[] first_down = list(list(controlnet_result.values())[0].values())[0][0] first_mid = list(list(controlnet_result.values())[0].values())[0][1] shape0 = first_mid.shape[0] if layer == -1 else 1 for ii in range(len(first_down)): _down_block_res_samples.append( torch.zeros( (shape0, first_down[ii].shape[1], len(context) ,*first_down[ii].shape[3:]), device=device, dtype=first_down[ii].dtype, )) _mid_block_res_samples = torch.zeros( (shape0, first_mid.shape[1], len(context) ,*first_mid.shape[3:]), device=device, dtype=first_mid.dtype, ) def merge_result(fr, type_str): nonlocal _mid_block_res_samples, _down_block_res_samples result = str(fr) + "_" + type_str val = controlnet_result[fr][type_str] if layer == -1: cur_down = [ v.to(device = device, dtype=first_down[0].dtype, non_blocking=True) if v.device != device else v for v in val[0] ] cur_mid =val[1].to(device = device, dtype=first_mid.dtype, non_blocking=True) if val[1].device != device else val[1] else: cur_down = [ v[layer].to(device = device, dtype=first_down[0].dtype, non_blocking=True) if v.device != device else v[layer] for v in val[0] ] cur_mid =val[1][layer].to(device = device, dtype=first_mid.dtype, non_blocking=True) if val[1].device != device else val[1][layer] loc = list(set(context) & set(controlnet_scale_map[result]["frames"])) scales = [] for o in loc: for j, f in enumerate(controlnet_scale_map[result]["frames"]): if o == f: scales.append(controlnet_scale_map[result]["scales"][j]) break loc_index=[] for o in loc: for j, f in enumerate( context ): if o==f: loc_index.append(j) break mod = torch.tensor(scales).to(device, dtype=cur_mid.dtype) ''' for ii in range(len(_down_block_res_samples)): logger.info(f"{type_str=} / {cur_down[ii].shape=}") logger.info(f"{type_str=} / {_down_block_res_samples[ii].shape=}") logger.info(f"{type_str=} / {cur_mid.shape=}") logger.info(f"{type_str=} / {_mid_block_res_samples.shape=}") ''' add = cur_mid * mod[None,None,:,None,None] _mid_block_res_samples[:, :, loc_index, :, :] = _mid_block_res_samples[:, :, loc_index, :, :] + add for ii in range(len(cur_down)): add = cur_down[ii] * mod[None,None,:,None,None] _down_block_res_samples[ii][:, :, loc_index, :, :] = _down_block_res_samples[ii][:, :, loc_index, :, :] + add hit = False no_shrink_list = [] for fr in controlnet_result: for type_str in controlnet_result[fr]: if not is_control_layer(type_str, layer): continue hit = True if shrink_controlnet and (type_str in no_shrink_type): no_shrink_list.append(type_str) continue merge_result(fr, type_str) cur_d_height, cur_d_width = _down_block_res_samples[0].shape[-2:] cur_lat_height, cur_lat_width = latents.shape[-2:] if cur_lat_height != cur_d_height: #logger.info(f"{cur_lat_height=} / {cur_d_height=}") for ii, rate in zip(range(len(_down_block_res_samples)), (1,1,1,2,2,2,4,4,4,8,8,8)): new_h = (cur_lat_height + rate-1) // rate new_w = (cur_lat_width + rate-1) // rate #logger.info(f"b {_down_block_res_samples[ii].shape=}") _down_block_res_samples[ii] = scale_5d_tensor(_down_block_res_samples[ii], new_h, new_w, context_frames) #logger.info(f"a {_down_block_res_samples[ii].shape=}") _mid_block_res_samples = scale_5d_tensor(_mid_block_res_samples, (cur_lat_height + rate - 1)// 8, (cur_lat_width + rate - 1)// 8, context_frames) for fr in controlnet_result: for type_str in controlnet_result[fr]: if type_str not in no_shrink_list: continue merge_result(fr, type_str) if not hit: return None, None return _down_block_res_samples, _mid_block_res_samples def process_controlnet( target_frames: List[int] = None ): #logger.info(f"process_controlnet called {target_frames=}") nonlocal controlnet_result controlnet_samples_on_vram = 0 loc = list(set(target_frames) & set(controlnet_result.keys())) controlnet_result = {key: controlnet_result[key] for key in loc} target_frames = list(set(target_frames) - set(loc)) #logger.info(f"-> {target_frames=}") if len(target_frames) == 0: return def sample_to_device( sample ): nonlocal controlnet_samples_on_vram if controlnet_max_samples_on_vram <= controlnet_samples_on_vram: if sample[0][0].device != torch.device("cpu"): down_samples = [ v.to(device = torch.device("cpu"), non_blocking=True) for v in sample[0] ] mid_sample = sample[1].to(device = torch.device("cpu"), non_blocking=True) else: down_samples = sample[0] mid_sample = sample[1] else: if sample[0][0].device != device: down_samples = [ v.to(device = device, non_blocking=True) for v in sample[0] ] mid_sample = sample[1].to(device = device, non_blocking=True) else: down_samples = sample[0] mid_sample = sample[1] controlnet_samples_on_vram += 1 return down_samples, mid_sample for fr in controlnet_result: for type_str in controlnet_result[fr]: controlnet_result[fr][type_str] = sample_to_device(controlnet_result[fr][type_str]) for type_str in controlnet_type_map: cont_vars = get_controlnet_variable(type_str, i, len(timesteps), target_frames) if not cont_vars: continue org_device = self.controlnet_map[type_str].device if org_device != device: self.controlnet_map[type_str] = self.controlnet_map[type_str].to(device=device, non_blocking=True) for cont_var in cont_vars: frame_no = cont_var["frame_no"] if latents.shape[0] == 1: latent_model_input = ( latents[:, :, [frame_no]] .to(device) .repeat( prompt_encoder.get_condi_size(), 1, 1, 1, 1) ) else: latent_model_input=[] for s0_index in list(range(latents.shape[0])) + list(range(latents.shape[0])): latent_model_input.append( latents[[s0_index], :, [frame_no]].to(device).unsqueeze(dim=2) ) latent_model_input = torch.cat(latent_model_input) if shrink_controlnet and (type_str not in no_shrink_type): cur_lat_height, cur_lat_width = latent_model_input.shape[-2:] cur = min(cur_lat_height, cur_lat_width) if cur > 64: # 512 / 8 = 64 if cur_lat_height > cur_lat_width: shr_lat_height = 64 * cur_lat_height / cur_lat_width shr_lat_width = 64 else: shr_lat_height = 64 shr_lat_width = 64 * cur_lat_width / cur_lat_height shr_lat_height = int(shr_lat_height // 8 * 8) shr_lat_width = int(shr_lat_width // 8 * 8) #logger.info(f"b {latent_model_input.shape=}") latent_model_input = scale_5d_tensor(latent_model_input, shr_lat_height, shr_lat_width, 1) #logger.info(f"a {latent_model_input.shape=}") control_model_input = self.scheduler.scale_model_input(latent_model_input, t)[:, :, 0] controlnet_prompt_embeds = prompt_encoder.get_current_prompt_embeds([frame_no], latents.shape[2]) if False: controlnet_prompt_embeds = controlnet_prompt_embeds.to(device=device, non_blocking=True) cont_var_img = cont_var["image"].to(device=device, non_blocking=True) __down_list=[] __mid_list=[] for layer_index in range(0, control_model_input.shape[0], unet_batch_size): __control_model_input = control_model_input[layer_index:layer_index+unet_batch_size] __controlnet_prompt_embeds = controlnet_prompt_embeds[layer_index :(layer_index + unet_batch_size)] __cont_var_img = cont_var_img[layer_index:layer_index+unet_batch_size] __down_samples, __mid_sample = self.controlnet_map[type_str]( __control_model_input, t, encoder_hidden_states=__controlnet_prompt_embeds, controlnet_cond=__cont_var_img, conditioning_scale=cont_var["cond_scale"], guess_mode=cont_var["guess_mode"], return_dict=False, ) __down_list.append(__down_samples) __mid_list.append(__mid_sample) down_samples=[] for d_no in range(len(__down_list[0])): down_samples.append( torch.cat([ v[d_no] for v in __down_list ]) ) mid_sample = torch.cat(__mid_list) else: cont_var_img = cont_var["image"].to(device=device) cur_lat_height, cur_lat_width = latent_model_input.shape[-2:] cur_img_height, cur_img_width = cont_var_img.shape[-2:] if (cur_lat_height*8 != cur_img_height) or (cur_lat_width*8 != cur_img_width): cont_var_img = torch.nn.functional.interpolate( cont_var_img.float(), size=(cur_lat_height*8, cur_lat_width*8), mode="bicubic", align_corners=False ).to(cont_var_img.dtype) down_samples, mid_sample = self.controlnet_map[type_str]( control_model_input, t, encoder_hidden_states=controlnet_prompt_embeds.to(device=device), controlnet_cond=cont_var_img, conditioning_scale=cont_var["cond_scale"], guess_mode=cont_var["guess_mode"], return_dict=False, ) for ii in range(len(down_samples)): down_samples[ii] = rearrange(down_samples[ii], "(b f) c h w -> b c f h w", f=1) mid_sample = rearrange(mid_sample, "(b f) c h w -> b c f h w", f=1) if frame_no not in controlnet_result: controlnet_result[frame_no] = {} ''' for ii in range(len(down_samples)): logger.info(f"{type_str=} / {down_samples[ii].shape=}") logger.info(f"{type_str=} / {mid_sample.shape=}") ''' controlnet_result[frame_no][type_str] = sample_to_device((down_samples, mid_sample)) if org_device != device: self.controlnet_map[type_str] = self.controlnet_map[type_str].to(device=org_device, non_blocking=True) #logger.info(f"STEP start") stopwatch_record("STEP start") for context in context_scheduler( i, num_inference_steps, latents.shape[2], context_frames, context_stride, context_overlap ): stopwatch_record("lora_map UNapply start") if self.lora_map: self.lora_map.unapply() stopwatch_record("lora_map UNapply end") if controlnet_image_map: if is_v2v: controlnet_target = context else: controlnet_target = list(range(context[0]-context_frames, context[0])) + context + list(range(context[-1]+1, context[-1]+1+context_frames)) controlnet_target = [f%video_length for f in controlnet_target] controlnet_target = list(set(controlnet_target)) process_controlnet(controlnet_target) # expand the latents if latents.shape[0] == 1: latent_model_input = ( latents[:, :, context] .to(device) .repeat(prompt_encoder.get_condi_size(), 1, 1, 1, 1) ) else: latent_model_input=[] for s0_index in list(range(latents.shape[0])) + list(range(latents.shape[0])): latent_model_input.append( latents[s0_index:s0_index+1, :, context].to(device) ) latent_model_input = torch.cat(latent_model_input) latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) cur_prompt = prompt_encoder.get_current_prompt_embeds(context, latents.shape[2]).to(device=device) if controlnet_for_region: down_block_res_samples,mid_block_res_sample = (None,None) else: down_block_res_samples,mid_block_res_sample = get_controlnet_result(context) if c_ref_enable: # ref only part ref_noise = randn_tensor( ref_image_latents.shape, generator=generator, device=device, dtype=ref_image_latents.dtype ) ref_xt = self.scheduler.add_noise( ref_image_latents, ref_noise, t.reshape( 1, ), ) ref_xt = self.scheduler.scale_model_input(ref_xt, t) stopwatch_record("C_REF_MODE write start") C_REF_MODE = "write" self.unet( ref_xt, t, encoder_hidden_states=cur_prompt, cross_attention_kwargs=cross_attention_kwargs, return_dict=False, ) stopwatch_record("C_REF_MODE write end") C_REF_MODE = "read" # predict the noise residual stopwatch_record("normal unet start") __pred = [] for layer_index in range(0, latent_model_input.shape[0], unet_batch_size): if self.lora_map: self.lora_map.apply(layer_index, latent_model_input.shape[0], context[len(context)//2]) if controlnet_for_region: __do,__mid = get_controlnet_result(context, layer_index) else: __do = [] if down_block_res_samples is not None: for do in down_block_res_samples: __do.append(do[layer_index:layer_index+unet_batch_size]) else: __do = None __mid = None if mid_block_res_sample is not None: __mid = mid_block_res_sample[layer_index:layer_index+unet_batch_size] __lat = latent_model_input[layer_index:layer_index+unet_batch_size] __cur_prompt = cur_prompt[layer_index * context_frames:(layer_index + unet_batch_size)*context_frames] stopwatch_record("self.unet start") pred_layer = self.unet( __lat.to(self.unet.device, self.unet.dtype), t, encoder_hidden_states=__cur_prompt, cross_attention_kwargs=cross_attention_kwargs, down_block_additional_residuals=__do, mid_block_additional_residual=__mid, return_dict=False, )[0] stopwatch_record("self.unet end") wh = None if i < len(timesteps) * region_mask.get_crop_generation_rate(layer_index, latent_model_input.shape[0]): wh, xy_list = region_mask.get_area(layer_index, latent_model_input.shape[0], context) if wh: a_w, a_h = wh __lat_list = [] for c_index, xy in enumerate( xy_list ): a_x, a_y = xy __lat_list.append( __lat[:,:,[c_index],a_y:a_y+a_h, a_x:a_x+a_w ] ) __lat = torch.cat(__lat_list, dim=2) if __do is not None: __tmp_do = [] for _d, rate in zip(__do, (1,1,1,2,2,2,4,4,4,8,8,8)): _inner_do_list = [] for c_index, xy in enumerate( xy_list ): a_x, a_y = xy _inner_do_list.append(_d[:,:,[c_index],(a_y + rate-1)//rate:((a_y+a_h)+ rate-1)//rate, (a_x+ rate-1)//rate:((a_x+a_w)+ rate-1)//rate ] ) __tmp_do.append( torch.cat(_inner_do_list, dim=2) ) __do = __tmp_do if __mid is not None: rate = 8 _mid_list = [] for c_index, xy in enumerate( xy_list ): a_x, a_y = xy _mid_list.append( __mid[:,:,[c_index],(a_y+ rate-1)//rate:((a_y+a_h)+ rate-1)//rate, (a_x+ rate-1)//rate:((a_x+a_w)+ rate-1)//rate ] ) __mid = torch.cat(_mid_list, dim=2) stopwatch_record("crop self.unet start") crop_pred_layer = self.unet( __lat.to(self.unet.device, self.unet.dtype), t, encoder_hidden_states=__cur_prompt, cross_attention_kwargs=cross_attention_kwargs, down_block_additional_residuals=__do, mid_block_additional_residual=__mid, return_dict=False, )[0] stopwatch_record("crop self.unet end") if wh: a_w, a_h = wh for c_index, xy in enumerate( xy_list ): a_x, a_y = xy pred_layer[:,:,[c_index],a_y:a_y+a_h, a_x:a_x+a_w] = crop_pred_layer[:,:,[c_index],:,:] __pred.append( pred_layer ) __do = None __mid = None down_block_res_samples = None mid_block_res_sample = None pred = torch.cat(__pred) stopwatch_record("normal unet end") pred = pred.to(dtype=latents.dtype, device=latents.device) noise_pred[:, :, context] = noise_pred[:, :, context] + pred counter[:, :, context] = counter[:, :, context] + 1 progress_bar.update() # perform guidance noise_size = prompt_encoder.get_condi_size() if do_classifier_free_guidance: noise_pred = (noise_pred / counter) noise_list = list(noise_pred.chunk( noise_size )) if multi_uncond_mode: uc_noise_list = noise_list[:len(noise_list)//2] noise_list = noise_list[len(noise_list)//2:] for n in range(len(noise_list)): noise_list[n] = uc_noise_list[n] + guidance_scale * (noise_list[n] - uc_noise_list[n]) else: noise_pred_uncond = noise_list.pop(0) for n in range(len(noise_list)): noise_list[n] = noise_pred_uncond + guidance_scale * (noise_list[n] - noise_pred_uncond) noise_size = len(noise_list) noise_pred = torch.cat(noise_list) # call the callback, if provided if (i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0)) and ( callback is not None and (callback_steps is not None and i in callback_steps) ): denoised = latents - noise_pred denoised = self.interpolate_latents(denoised, interpolation_factor, device) video = torch.from_numpy(self.decode_latents(denoised)) callback(i, video) if gradual_latent: if prev_gradient_latent_size != cur_gradient_latent_size: noise_pred = resize_tensor(noise_pred, cur_gradient_latent_size, True) latents = resize_tensor(latents, cur_gradient_latent_size, True) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step( model_output=noise_pred, timestep=t, sample=latents, **extra_step_kwargs, return_dict=False, )[0] if need_region_blend(i, len(timesteps)): latents_list = latents.chunk( noise_size ) tmp_latent = torch.zeros( latents_list[0].shape, device=latents.device, dtype=latents.dtype ) for r_no in range(len(region_list)): mask = region_mask.get_mask( r_no ) if gradual_latent: mask = resize_tensor(mask, cur_gradient_latent_size) src = region_list[r_no]["src"] if src == -1: init_latents_proper = image_latents[:1] if i < len(timesteps) - 1: noise_timestep = timesteps[i + 1] init_latents_proper = self.scheduler.add_noise( init_latents_proper, noise, torch.tensor([noise_timestep]) ) if gradual_latent: lat = resize_tensor(init_latents_proper, cur_gradient_latent_size) else: lat = init_latents_proper else: lat = latents_list[src] tmp_latent = tmp_latent * (1-mask) + lat * mask latents = tmp_latent init_latents_proper = None lat = None latents_list = None tmp_latent = None i+=1 real_i = max(i, real_i) if gradual_latent: if prev_gradient_latent_size != cur_gradient_latent_size: reverse = min(i, reverse_steps) self.scheduler._step_index -= reverse _noise = resize_tensor(noise, cur_gradient_latent_size) for count in range(i, i+noise_add_count): count = min(count,len(timesteps)-1) latents = self.scheduler.add_noise( latents, _noise, torch.tensor([timesteps[count]]) ) i -= reverse torch.cuda.empty_cache() gc.collect() prev_gradient_latent_size = cur_gradient_latent_size stopwatch_stop("LOOP end") controlnet_result = None torch.cuda.empty_cache() gc.collect() if c_ref_enable: self.unload_controlnet_ref_only( reference_attn=controlnet_ref_map["reference_attn"], reference_adain=controlnet_ref_map["reference_adain"], ) if self.ip_adapter: show_gpu("before unload ip_adapter") self.ip_adapter.unload() self.ip_adapter = None torch.cuda.empty_cache() show_gpu("after unload ip_adapter") latents = self.interpolate_latents(latents,interpolation_factor, device) # Return latents if requested (this will never be a dict) if not output_type == "latent": video = self.decode_latents(latents) else: video = latents # Convert to tensor if output_type == "tensor": video = torch.from_numpy(video) # Offload last model to CPU if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return video return AnimationPipelineOutput(videos=video) def progress_bar(self, iterable=None, total=None): if not hasattr(self, "_progress_bar_config"): self._progress_bar_config = {} elif not isinstance(self._progress_bar_config, dict): raise ValueError( f"`self._progress_bar_config` should be of type `dict`, but is {type(self._progress_bar_config)}." ) if iterable is not None: return tqdm(iterable, **self._progress_bar_config) elif total is not None: return tqdm(total=total, **self._progress_bar_config) else: raise ValueError("Either `total` or `iterable` has to be defined.") def freeze(self): logger.debug("Freezing pipeline...") _ = self.unet.eval() self.unet = self.unet.requires_grad_(False) self.unet.train = nop_train _ = self.text_encoder.eval() self.text_encoder = self.text_encoder.requires_grad_(False) self.text_encoder.train = nop_train _ = self.vae.eval() self.vae = self.vae.requires_grad_(False) self.vae.train = nop_train