File size: 5,625 Bytes
d0ffe9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import glob
import logging
import os
import shutil
from pathlib import Path

import cv2
import numpy as np
import torch
import torch.nn.functional as F
from PIL import Image
from tqdm.rich import tqdm

logger = logging.getLogger(__name__)


#https://github.com/jinwonkim93/laplacian-pyramid-blend
#https://blog.shikoan.com/pytorch-laplacian-pyramid/
class LaplacianPyramidBlender:

	device = None

	def get_gaussian_kernel(self):
		kernel = np.array([
			[1, 4, 6, 4, 1],
			[4, 16, 24, 16, 4],
			[6, 24, 36, 24, 6],
			[4, 16, 24, 16, 4],
			[1, 4, 6, 4, 1]], np.float32) / 256.0
		gaussian_k = torch.as_tensor(kernel.reshape(1, 1, 5, 5),device=self.device)
		return gaussian_k

	def pyramid_down(self, image):
		with torch.no_grad():
			gaussian_k = self.get_gaussian_kernel()
			multiband = [F.conv2d(image[:, i:i + 1,:,:], gaussian_k, padding=2, stride=2) for i in range(3)]
			down_image = torch.cat(multiband, dim=1)
		return down_image

	def pyramid_up(self, image, size = None):
		with torch.no_grad():
			gaussian_k = self.get_gaussian_kernel()
			if size is None:
				upsample = F.interpolate(image, scale_factor=2)
			else:
				upsample = F.interpolate(image, size=size)
			multiband = [F.conv2d(upsample[:, i:i + 1,:,:], gaussian_k, padding=2) for i in range(3)]
			up_image = torch.cat(multiband, dim=1)
		return up_image

	def gaussian_pyramid(self, original, n_pyramids):
		x = original
		# pyramid down
		pyramids = [original]
		for i in range(n_pyramids):
			x = self.pyramid_down(x)
			pyramids.append(x)
		return pyramids

	def laplacian_pyramid(self, original, n_pyramids):
		pyramids = self.gaussian_pyramid(original, n_pyramids)

		# pyramid up - diff
		laplacian = []
		for i in range(len(pyramids) - 1):
			diff = pyramids[i] - self.pyramid_up(pyramids[i + 1], pyramids[i].shape[2:])
			laplacian.append(diff)

		laplacian.append(pyramids[-1])
		return laplacian

	def laplacian_pyramid_blending_with_mask(self, src, target, mask, num_levels = 9):
        # assume mask is float32 [0,1]

		# generate Gaussian pyramid for src,target and mask

		Gsrc = torch.as_tensor(np.expand_dims(src, axis=0), device=self.device)
		Gtarget = torch.as_tensor(np.expand_dims(target, axis=0), device=self.device)
		Gmask = torch.as_tensor(np.expand_dims(mask, axis=0), device=self.device)

		lpA = self.laplacian_pyramid(Gsrc,num_levels)[::-1]
		lpB = self.laplacian_pyramid(Gtarget,num_levels)[::-1]
		gpMr = self.gaussian_pyramid(Gmask,num_levels)[::-1]

		# Now blend images according to mask in each level
		LS = []
		for idx, (la,lb,Gmask) in enumerate(zip(lpA,lpB,gpMr)):
			lo = lb * (1.0 - Gmask)
			if idx <= 2:
				lo += lb * Gmask
			else:
				lo +=  la * Gmask
			LS.append(lo)

		# now reconstruct
		ls_ = LS.pop(0)
		for lap in LS:
			ls_ = self.pyramid_up(ls_, lap.shape[2:]) + lap

		result = ls_.squeeze(dim=0).to('cpu').detach().numpy().copy()

		return result

	def __call__(self,
					src_image: np.ndarray,
					target_image: np.ndarray,
					mask_image: np.ndarray,
					device
					):

		self.device = device

		num_levels = int(np.log2(src_image.shape[0]))
		#normalize image to 0, 1
		mask_image = np.clip(mask_image, 0, 1).transpose([2, 0, 1])

		src_image = src_image.transpose([2, 0, 1]).astype(np.float32) / 255.0
		target_image = target_image.transpose([2, 0, 1]).astype(np.float32) / 255.0
		composite_image = self.laplacian_pyramid_blending_with_mask(src_image, target_image, mask_image, num_levels)
		composite_image = np.clip(composite_image*255, 0 , 255).astype(np.uint8)
		composite_image=composite_image.transpose([1, 2, 0])
		return composite_image


def composite(bg_dir, fg_list, output_dir, masked_area_list, device="cuda"):
	bg_list = sorted(glob.glob( os.path.join(bg_dir ,"[0-9]*.png"), recursive=False))

	blender = LaplacianPyramidBlender()

	for bg, fg_array, mask in tqdm(zip(bg_list, fg_list, masked_area_list),total=len(bg_list), desc="compositing"):
		name = Path(bg).name
		save_path = output_dir / name

		if fg_array is None:
			logger.info(f"composite fg_array is None -> skip")
			shutil.copy(bg, save_path)
			continue

		if mask is None:
			logger.info(f"mask is None -> skip")
			shutil.copy(bg, save_path)
			continue

		bg = np.asarray(Image.open(bg)).copy()
		fg = fg_array
		mask = np.concatenate([mask, mask, mask], 2)

		h, w, _ = bg.shape

		fg = cv2.resize(fg, dsize=(w,h))
		mask = cv2.resize(mask, dsize=(w,h))


		mask = mask.astype(np.float32)
#		mask = mask * 255
		mask = cv2.GaussianBlur(mask, (15, 15), 0)
		mask = mask / 255

		fg = fg * mask + bg * (1-mask)

		img = blender(fg, bg, mask,device)


		img = Image.fromarray(img)
		img.save(save_path)

def simple_composite(bg_dir, fg_list, output_dir, masked_area_list, device="cuda"):
	bg_list = sorted(glob.glob( os.path.join(bg_dir ,"[0-9]*.png"), recursive=False))

	for bg, fg_array, mask in tqdm(zip(bg_list, fg_list, masked_area_list),total=len(bg_list), desc="compositing"):
		name = Path(bg).name
		save_path = output_dir / name

		if fg_array is None:
			logger.info(f"composite fg_array is None -> skip")
			shutil.copy(bg, save_path)
			continue

		if mask is None:
			logger.info(f"mask is None -> skip")
			shutil.copy(bg, save_path)
			continue

		bg = np.asarray(Image.open(bg)).copy()
		fg = fg_array
		mask = np.concatenate([mask, mask, mask], 2)

		h, w, _ = bg.shape

		fg = cv2.resize(fg, dsize=(w,h))
		mask = cv2.resize(mask, dsize=(w,h))


		mask = mask.astype(np.float32)
		mask = cv2.GaussianBlur(mask, (15, 15), 0)
		mask = mask / 255

		img = fg * mask + bg * (1-mask)
		img = img.clip(0 , 255).astype(np.uint8)

		img = Image.fromarray(img)
		img.save(save_path)