File size: 18,178 Bytes
d0ffe9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
import inspect
import warnings
from typing import Any, Callable, Dict, List, Optional, Tuple, Union

import numpy as np
import PIL.Image
import torch
import torch.nn.functional as F
from diffusers.models import ControlNetModel
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.utils.torch_utils import is_compiled_module


def is_torch2_available():
    return hasattr(F, "scaled_dot_product_attention")


@torch.no_grad()
def generate(
    self,
    prompt: Union[str, List[str]] = None,
    image: Union[
        torch.FloatTensor,
        PIL.Image.Image,
        np.ndarray,
        List[torch.FloatTensor],
        List[PIL.Image.Image],
        List[np.ndarray],
    ] = None,
    height: Optional[int] = None,
    width: Optional[int] = None,
    num_inference_steps: int = 50,
    guidance_scale: float = 7.5,
    negative_prompt: Optional[Union[str, List[str]]] = None,
    num_images_per_prompt: Optional[int] = 1,
    eta: float = 0.0,
    generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
    latents: Optional[torch.FloatTensor] = None,
    prompt_embeds: Optional[torch.FloatTensor] = None,
    negative_prompt_embeds: Optional[torch.FloatTensor] = None,
    output_type: Optional[str] = "pil",
    return_dict: bool = True,
    callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
    callback_steps: int = 1,
    cross_attention_kwargs: Optional[Dict[str, Any]] = None,
    controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
    guess_mode: bool = False,
    control_guidance_start: Union[float, List[float]] = 0.0,
    control_guidance_end: Union[float, List[float]] = 1.0,
):
    r"""
    Function invoked when calling the pipeline for generation.

    Args:
        prompt (`str` or `List[str]`, *optional*):
            The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
            instead.
        image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
                `List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
            The ControlNet input condition. ControlNet uses this input condition to generate guidance to Unet. If
            the type is specified as `Torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can
            also be accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If
            height and/or width are passed, `image` is resized according to them. If multiple ControlNets are
            specified in init, images must be passed as a list such that each element of the list can be correctly
            batched for input to a single controlnet.
        height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
            The height in pixels of the generated image.
        width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
            The width in pixels of the generated image.
        num_inference_steps (`int`, *optional*, defaults to 50):
            The number of denoising steps. More denoising steps usually lead to a higher quality image at the
            expense of slower inference.
        guidance_scale (`float`, *optional*, defaults to 7.5):
            Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
            `guidance_scale` is defined as `w` of equation 2. of [Imagen
            Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
            1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
            usually at the expense of lower image quality.
        negative_prompt (`str` or `List[str]`, *optional*):
            The prompt or prompts not to guide the image generation. If not defined, one has to pass
            `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
            less than `1`).
        num_images_per_prompt (`int`, *optional*, defaults to 1):
            The number of images to generate per prompt.
        eta (`float`, *optional*, defaults to 0.0):
            Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
            [`schedulers.DDIMScheduler`], will be ignored for others.
        generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
            One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
            to make generation deterministic.
        latents (`torch.FloatTensor`, *optional*):
            Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
            generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
            tensor will ge generated by sampling using the supplied random `generator`.
        prompt_embeds (`torch.FloatTensor`, *optional*):
            Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
            provided, text embeddings will be generated from `prompt` input argument.
        negative_prompt_embeds (`torch.FloatTensor`, *optional*):
            Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
            weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
            argument.
        output_type (`str`, *optional*, defaults to `"pil"`):
            The output format of the generate image. Choose between
            [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
        return_dict (`bool`, *optional*, defaults to `True`):
            Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
            plain tuple.
        callback (`Callable`, *optional*):
            A function that will be called every `callback_steps` steps during inference. The function will be
            called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
        callback_steps (`int`, *optional*, defaults to 1):
            The frequency at which the `callback` function will be called. If not specified, the callback will be
            called at every step.
        cross_attention_kwargs (`dict`, *optional*):
            A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
            `self.processor` in
            [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
        controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
            The outputs of the controlnet are multiplied by `controlnet_conditioning_scale` before they are added
            to the residual in the original unet. If multiple ControlNets are specified in init, you can set the
            corresponding scale as a list.
        guess_mode (`bool`, *optional*, defaults to `False`):
            In this mode, the ControlNet encoder will try best to recognize the content of the input image even if
            you remove all prompts. The `guidance_scale` between 3.0 and 5.0 is recommended.
        control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
            The percentage of total steps at which the controlnet starts applying.
        control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
            The percentage of total steps at which the controlnet stops applying.

    Examples:

    Returns:
        [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
        [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
        When returning a tuple, the first element is a list with the generated images, and the second element is a
        list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
        (nsfw) content, according to the `safety_checker`.
    """
    controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet

    # align format for control guidance
    if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
        control_guidance_start = len(control_guidance_end) * [control_guidance_start]
    elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
        control_guidance_end = len(control_guidance_start) * [control_guidance_end]
    elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
        mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
        control_guidance_start, control_guidance_end = mult * [control_guidance_start], mult * [
            control_guidance_end
        ]

    # 1. Check inputs. Raise error if not correct
    self.check_inputs(
        prompt,
        image,
        callback_steps,
        negative_prompt,
        prompt_embeds,
        negative_prompt_embeds,
        controlnet_conditioning_scale,
        control_guidance_start,
        control_guidance_end,
    )

    # 2. Define call parameters
    if prompt is not None and isinstance(prompt, str):
        batch_size = 1
    elif prompt is not None and isinstance(prompt, list):
        batch_size = len(prompt)
    else:
        batch_size = prompt_embeds.shape[0]

    device = self._execution_device
    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
    # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
    # corresponds to doing no classifier free guidance.
    do_classifier_free_guidance = guidance_scale > 1.0

    if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
        controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)

    global_pool_conditions = (
        controlnet.config.global_pool_conditions
        if isinstance(controlnet, ControlNetModel)
        else controlnet.nets[0].config.global_pool_conditions
    )
    guess_mode = guess_mode or global_pool_conditions

    # 3. Encode input prompt
    text_encoder_lora_scale = (
        cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
    )
    prompt_embeds = self._encode_prompt(
        prompt,
        device,
        num_images_per_prompt,
        do_classifier_free_guidance,
        negative_prompt,
        prompt_embeds=prompt_embeds,
        negative_prompt_embeds=negative_prompt_embeds,
        lora_scale=text_encoder_lora_scale,
    )

    # 4. Prepare image
    if isinstance(controlnet, ControlNetModel):
        image = self.prepare_image(
            image=image,
            width=width,
            height=height,
            batch_size=batch_size * num_images_per_prompt,
            num_images_per_prompt=num_images_per_prompt,
            device=device,
            dtype=controlnet.dtype,
            do_classifier_free_guidance=do_classifier_free_guidance,
            guess_mode=guess_mode,
        )
        height, width = image.shape[-2:]
    elif isinstance(controlnet, MultiControlNetModel):
        images = []

        for image_ in image:
            image_ = self.prepare_image(
                image=image_,
                width=width,
                height=height,
                batch_size=batch_size * num_images_per_prompt,
                num_images_per_prompt=num_images_per_prompt,
                device=device,
                dtype=controlnet.dtype,
                do_classifier_free_guidance=do_classifier_free_guidance,
                guess_mode=guess_mode,
            )

            images.append(image_)

        image = images
        height, width = image[0].shape[-2:]
    else:
        assert False

    # 5. Prepare timesteps
    self.scheduler.set_timesteps(num_inference_steps, device=device)
    timesteps = self.scheduler.timesteps

    # 6. Prepare latent variables
    num_channels_latents = self.unet.config.in_channels
    latents = self.prepare_latents(
        batch_size * num_images_per_prompt,
        num_channels_latents,
        height,
        width,
        prompt_embeds.dtype,
        device,
        generator,
        latents,
    )

    # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
    extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

    # 7.1 Create tensor stating which controlnets to keep
    controlnet_keep = []
    for i in range(len(timesteps)):
        keeps = [
            1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
            for s, e in zip(control_guidance_start, control_guidance_end)
        ]
        controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)

    # 8. Denoising loop
    num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
    with self.progress_bar(total=num_inference_steps) as progress_bar:
        for i, t in enumerate(timesteps):
            # expand the latents if we are doing classifier free guidance
            latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
            latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

            # controlnet(s) inference
            if guess_mode and do_classifier_free_guidance:
                # Infer ControlNet only for the conditional batch.
                control_model_input = latents
                control_model_input = self.scheduler.scale_model_input(control_model_input, t)
                controlnet_prompt_embeds = prompt_embeds[:, :77, :].chunk(2)[1]
            else:
                control_model_input = latent_model_input
                controlnet_prompt_embeds = prompt_embeds[:, :77, :]

            if isinstance(controlnet_keep[i], list):
                cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
            else:
                controlnet_cond_scale = controlnet_conditioning_scale
                if isinstance(controlnet_cond_scale, list):
                    controlnet_cond_scale = controlnet_cond_scale[0]
                cond_scale = controlnet_cond_scale * controlnet_keep[i]

            down_block_res_samples, mid_block_res_sample = self.controlnet(
                control_model_input,
                t,
                encoder_hidden_states=controlnet_prompt_embeds,
                controlnet_cond=image,
                conditioning_scale=cond_scale,
                guess_mode=guess_mode,
                return_dict=False,
            )

            if guess_mode and do_classifier_free_guidance:
                # Infered ControlNet only for the conditional batch.
                # To apply the output of ControlNet to both the unconditional and conditional batches,
                # add 0 to the unconditional batch to keep it unchanged.
                down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
                mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])

            # predict the noise residual
            noise_pred = self.unet(
                latent_model_input,
                t,
                encoder_hidden_states=prompt_embeds,
                cross_attention_kwargs=cross_attention_kwargs,
                down_block_additional_residuals=down_block_res_samples,
                mid_block_additional_residual=mid_block_res_sample,
                return_dict=False,
            )[0]

            # perform guidance
            if do_classifier_free_guidance:
                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

            # compute the previous noisy sample x_t -> x_t-1
            latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]

            # call the callback, if provided
            if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                progress_bar.update()
                if callback is not None and i % callback_steps == 0:
                    callback(i, t, latents)

    # If we do sequential model offloading, let's offload unet and controlnet
    # manually for max memory savings
    if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
        self.unet.to("cpu")
        self.controlnet.to("cpu")
        torch.cuda.empty_cache()

    if not output_type == "latent":
        image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
        image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
    else:
        image = latents
        has_nsfw_concept = None

    if has_nsfw_concept is None:
        do_denormalize = [True] * image.shape[0]
    else:
        do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]

    image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)

    # Offload last model to CPU
    if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
        self.final_offload_hook.offload()

    if not return_dict:
        return (image, has_nsfw_concept)

    return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)