TheMihirNaik commited on
Commit
5b2d04c
·
verified ·
1 Parent(s): ab94916

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -3
app.py CHANGED
@@ -27,11 +27,17 @@ Built by **Mihir Naik** 🚀
27
  )
28
 
29
 
30
- all_MiniLM_L6_V2_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
 
 
 
31
 
32
- intfloat_e5_large_v2_model = SentenceTransformer('intfloat/e5-large-v2')
 
 
 
33
 
34
- @app.get("/")
35
  def redirect_to_docs():
36
  """
37
  Redirects to the FastAPI documentation.
@@ -55,6 +61,9 @@ def generate_embeddings_all_MiniLM_L6_V2_model(sentences: List[str]):
55
  Returns:
56
  dict: A dictionary containing the embeddings as a JSON-compatible list.
57
  """
 
 
 
58
  embeddings = all_MiniLM_L6_V2_model.encode(sentences)
59
  return {"embeddings": embeddings.tolist()} # Return embeddings as a JSON-compatible list
60
 
@@ -70,5 +79,9 @@ def generate_embeddings_intfloat_e5_large_v2_model(sentences: List[str]):
70
  Returns:
71
  dict: A dictionary containing the embeddings as a JSON-compatible list.
72
  """
 
 
 
 
73
  embeddings = intfloat_e5_large_v2_model.encode(sentences)
74
  return {"embeddings": embeddings.tolist()}
 
27
  )
28
 
29
 
30
+ try:
31
+ all_MiniLM_L6_V2_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
32
+ except Exception as e:
33
+ raise RuntimeError("Failed to load the all-MiniLM-L6-v2 model.") from e
34
 
35
+ try:
36
+ intfloat_e5_large_v2_model = SentenceTransformer('intfloat/e5-large-v2')
37
+ except Exception as e:
38
+ raise RuntimeError("Failed to load the intfloat/e5-large-v2 model.") from e
39
 
40
+ @app.get("/", include_in_schema=False)
41
  def redirect_to_docs():
42
  """
43
  Redirects to the FastAPI documentation.
 
61
  Returns:
62
  dict: A dictionary containing the embeddings as a JSON-compatible list.
63
  """
64
+ if not sentences:
65
+ raise ValueError("The input list of sentences must not be empty.")
66
+
67
  embeddings = all_MiniLM_L6_V2_model.encode(sentences)
68
  return {"embeddings": embeddings.tolist()} # Return embeddings as a JSON-compatible list
69
 
 
79
  Returns:
80
  dict: A dictionary containing the embeddings as a JSON-compatible list.
81
  """
82
+
83
+ if not sentences:
84
+ raise ValueError("The input list of sentences must not be empty.")
85
+
86
  embeddings = intfloat_e5_large_v2_model.encode(sentences)
87
  return {"embeddings": embeddings.tolist()}