import streamlit as st import cv2 import numpy as np from ultralytics import YOLO # Load the YOLO model model = YOLO('yolov8_Medium.pt') # Ensure the model file is in the root directory of your Space def run_yolo(image): # Run the model on the image and get results results = model(image) return results def process_results(results, image): # Draw bounding boxes and labels on the image boxes = results[0].boxes # Get boxes from results for box in boxes: # Get the box coordinates and label x1, y1, x2, y2 = map(int, box.xyxy[0]) # Convert to integer coordinates conf = box.conf[0] # Confidence score cls = int(box.cls[0]) # Class index label = model.names[cls] # Get class name from index # Draw rectangle and label on the image cv2.rectangle(image, (x1, y1), (x2, y2), (255, 0, 0), 2) # Blue box cv2.putText(image, f"{label} {conf:.2f}", (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 2) return image import tempfile def process_video(uploaded_file): # Create a temporary file to save the uploaded video with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as temp_file: temp_file.write(uploaded_file.read()) temp_file_path = temp_file.name # Get the path of the temporary file # Read the video file video = cv2.VideoCapture(temp_file_path) total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) # Get the total number of frames frames = [] # Create a Streamlit progress bar and text for percentage progress_bar = st.progress(0) progress_text = st.empty() # Placeholder for percentage text current_frame = 0 while True: ret, frame = video.read() if not ret: break # Break the loop if there are no frames left # Run YOLO model on the current frame results = run_yolo(frame) # Process the results and draw boxes on the current frame processed_frame = process_results(results, frame) frames.append(processed_frame) # Save the processed frame current_frame += 1 # Calculate and display the progress progress_percentage = (current_frame / total_frames) * 100 progress_bar.progress(progress_percentage / 100) # Update the progress bar progress_text.text(f'Processing: {progress_percentage:.2f}%') # Update the percentage text video.release() # Create a video writer to save the processed frames height, width, _ = frames[0].shape out = cv2.VideoWriter('processed_video.mp4', cv2.VideoWriter_fourcc(*'mp4v'), 30, (width, height)) for frame in frames: out.write(frame) # Write each processed frame to the video out.release() # Complete the progress bar and show final message progress_bar.progress(100) progress_text.text('Processing: 100%') st.success('Video processing complete!') def main(): st.title("Motorbike Violation Detection") # Upload file uploaded_file = st.file_uploader("Choose an image or video...", type=["jpg", "jpeg", "png", "mp4"]) if uploaded_file is not None: if uploaded_file.type in ["image/jpeg", "image/png", "image/jpg"]: # Process the image image = np.array(cv2.imdecode(np.frombuffer(uploaded_file.read(), np.uint8), 1)) results = run_yolo(image) # Process the results and draw boxes on the image processed_image = process_results(results, image) # Display the processed image st.image(processed_image, caption='Detected Image', use_column_width=True) elif uploaded_file.type == "video/mp4": # Process the video process_video(uploaded_file) # Process the video and save the output st.video('processed_video.mp4') # Display the processed video if __name__ == "__main__": main()