Spaces:
Runtime error
Runtime error
File size: 2,800 Bytes
a0e79bc 83cc343 ecc44d4 83cc343 b8c6cbb 83cc343 b8c6cbb 83cc343 b8c6cbb 83cc343 b8c6cbb 83cc343 b8c6cbb 83cc343 b8c6cbb 83cc343 b8c6cbb 83cc343 b8c6cbb 83cc343 b8c6cbb 83cc343 b8c6cbb 83cc343 b8c6cbb 83cc343 b8c6cbb 83cc343 b8c6cbb 83cc343 b8c6cbb 83cc343 b8c6cbb 83cc343 b8c6cbb 83cc343 b8c6cbb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
import os
os.system("pip install gradio==2.7.5.2b")
import gradio as gr
title = "fairseq S^2: A Scalable and Integrable Speech Synthesis Toolkit"
description = "Gradio Demo for fairseq S^2: A Scalable and Integrable Speech Synthesis Toolkit. To use it, simply add your text, or click one of the examples to load them. Read more at the links below."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2109.06912' target='_blank'>fairseq S^2: A Scalable and Integrable Speech Synthesis Toolkit</a> | <a href='https://github.com/pytorch/fairseq/tree/main/examples/speech_synthesis' target='_blank'>Github Repo</a></p>"
examples = [
["common_voice_es_en.flac","xm_transformer_600m-es_en-multi_domain"]
]
io1 = gr.Interface.load("huggingface/facebook/xm_transformer_600m-es_en-multi_domain")
io2 = gr.Interface.load("huggingface/facebook/xm_transformer_600m-ru_en-multi_domain")
io3 = gr.Interface.load("huggingface/facebook/xm_transformer_600m-en_ru-multi_domain")
io4 = gr.Interface.load("huggingface/facebook/xm_transformer_600m-en_es-multi_domain")
io5 = gr.Interface.load("huggingface/facebook/xm_transformer_600m-en_zh-multi_domain")
io6 = gr.Interface.load("huggingface/facebook/xm_transformer_600m-fr_en-multi_domain")
io7 = gr.Interface.load("huggingface/facebook/xm_transformer_600m-en_ar-multi_domain")
io8 = gr.Interface.load("huggingface/facebook/xm_transformer_600m-en_tr-multi_domain")
def inference(text,model):
if model == "xm_transformer_600m-es_en-multi_domain":
outtext = io1(text)
elif model == "xm_transformer_600m-ru_en-multi_domain":
outtext = io2(text)
elif model == "xm_transformer_600m-en_ru-multi_domain":
outtext = io3(text)
elif model == "xm_transformer_600m-en_es-multi_domain":
outtext = io4(text)
elif model == "xm_transformer_600m-en_zh-multi_domain":
outtext = io5(text)
elif model == "xm_transformer_600m-fr_en-multi_domain":
outtext = io6(text)
elif model == "xm_transformer_600m-en_ar-multi_domain":
outtext = io7(text)
else:
outtext = io8(text)
return outtext
gr.Interface(
inference,
[gr.inputs.Audio(label="Input"),gr.inputs.Dropdown(choices=["xm_transformer_600m-es_en-multi_domain","xm_transformer_600m-ru_en-multi_domain","xm_transformer_600m-en_ru-multi_domain","xm_transformer_600m-en_es-multi_domain","xm_transformer_600m-en_zh-multi_domain","xm_transformer_600m-fr_en-multi_domain","xm_transformer_600m-en_ar-multi_domain","facebook/xm_transformer_600m-en_tr-multi_domain"], type="value", default="xm_transformer_600m-es_en-multi_domain", label="model")
],
gr.outputs.Audio(label="Output"),
examples=examples,
article=article,
title=title,
description=description).launch(enable_queue=True) |