|
import streamlit as st |
|
import numpy as np |
|
import plotly.graph_objects as go |
|
|
|
st.set_page_config(page_title="Quantum EM Cognition Simulator", layout="wide") |
|
|
|
st.title("Quantum Electromagnetic Cognition Simulator") |
|
|
|
|
|
st.sidebar.header("Simulation Parameters") |
|
|
|
|
|
st.sidebar.subheader("Electromagnetic Fields") |
|
electric_field = { |
|
"x": st.sidebar.slider("Electric Field X", -1.0, 1.0, 0.0, 0.01), |
|
"y": st.sidebar.slider("Electric Field Y", -1.0, 1.0, 0.0, 0.01), |
|
"z": st.sidebar.slider("Electric Field Z", -1.0, 1.0, 0.0, 0.01), |
|
} |
|
magnetic_field = { |
|
"x": st.sidebar.slider("Magnetic Field X", -1.0, 1.0, 0.0, 0.01), |
|
"y": st.sidebar.slider("Magnetic Field Y", -1.0, 1.0, 0.0, 0.01), |
|
"z": st.sidebar.slider("Magnetic Field Z", -1.0, 1.0, 0.0, 0.01), |
|
} |
|
|
|
|
|
st.sidebar.subheader("Quantum Parameters") |
|
psi = st.sidebar.slider("Ψ (Wave Function)", 0.0, 2*np.pi, np.pi, 0.01) |
|
h_bar = st.sidebar.slider("ℏ (Reduced Planck Constant)", 0.1, 2.0, 1.0, 0.01) |
|
|
|
|
|
st.sidebar.subheader("Neural Network") |
|
mass_distribution = st.sidebar.slider("Mass Distribution", 0.1, 2.0, 1.0, 0.01) |
|
temporal_factor = st.sidebar.slider("Temporal Factor", 0.1, 2.0, 1.0, 0.01) |
|
|
|
|
|
num_particles = 1000 |
|
positions = np.random.uniform(-5, 5, (num_particles, 3)) |
|
|
|
|
|
def update_particles(positions): |
|
positions += np.array([electric_field["x"], electric_field["y"], electric_field["z"]]) * 0.1 |
|
|
|
phase = psi * np.sin(positions[:, 0] * h_bar) |
|
positions[:, 0] += np.cos(phase) * 0.1 |
|
positions[:, 1] += np.sin(phase) * 0.1 |
|
|
|
mass_effect = mass_distribution * np.sin(positions[:, 0]) |
|
temporal_effect = temporal_factor * np.cos(np.random.random(num_particles) * 2 * np.pi) |
|
positions[:, 0] += mass_effect * temporal_effect * 0.1 |
|
|
|
positions[np.abs(positions) > 5] *= -0.9 |
|
|
|
return positions |
|
|
|
positions = update_particles(positions) |
|
|
|
|
|
fig = go.Figure(data=[go.Scatter3d( |
|
x=positions[:, 0], |
|
y=positions[:, 1], |
|
z=positions[:, 2], |
|
mode='markers', |
|
marker=dict( |
|
size=2, |
|
color=positions[:, 2], |
|
colorscale='Viridis', |
|
opacity=0.8 |
|
) |
|
)]) |
|
|
|
|
|
fig.update_layout( |
|
width=800, |
|
height=800, |
|
scene=dict( |
|
xaxis_title='X', |
|
yaxis_title='Y', |
|
zaxis_title='Z', |
|
aspectmode='cube' |
|
) |
|
) |
|
|
|
|
|
st.plotly_chart(fig) |
|
|
|
|
|
st.sidebar.markdown("---") |
|
st.sidebar.subheader("Tutorial") |
|
tutorial_steps = [ |
|
"Welcome to the Quantum EM Cognition Simulator! Here you can explore the intersection of quantum mechanics, electromagnetism, and AI cognition.", |
|
"Start by adjusting the Electromagnetic Fields. Watch how the particles (representing information) flow and interact.", |
|
"Now, try changing the Quantum Parameters. Notice how the Ψ (Wave Function) and ℏ (reduced Planck's constant) affect the particle behavior.", |
|
"Finally, experiment with the Neural Network parameters. The Mass Distribution and Temporal Factor influence how information propagates through the network.", |
|
"As you adjust these parameters, look for emerging patterns, self-organization, or unusual behaviors. These could represent breakthroughs in AI cognition!", |
|
"Remember, you're exploring uncharted territory. Your observations could lead to new paradigms in energy-efficient cognition, unified cognitive fields, or even autonomous intelligence.", |
|
"Enjoy your exploration of this quantum-electromagnetic-cognitive space!" |
|
] |
|
|
|
current_step = st.sidebar.radio("Tutorial Step", range(len(tutorial_steps)), format_func=lambda x: f"Step {x+1}") |
|
st.sidebar.write(tutorial_steps[current_step]) |
|
|