Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import random | |
| import numpy as np | |
| import sympy as sp | |
| class CosmicSymbolicSequence: | |
| def __init__(self, content, documentation=""): | |
| self.content = content | |
| self.documentation = documentation | |
| self.connections = [] | |
| self.entanglement_history = [] | |
| def __repr__(self): | |
| return f"CosmicSymbolicSequence({self.content})" | |
| class CosmicQuantumGumbo: | |
| def __init__(self, initial_sequences): | |
| self.sequences = [CosmicSymbolicSequence(s) for s in initial_sequences] | |
| self.constants = { | |
| 'fine_structure_constant': 1 / 137.036, | |
| 'epsilon_0': 8.854187817e-12, | |
| 'planck_constant': 6.62607015e-34, | |
| 'speed_of_light': 299792458, | |
| 'gravitational_constant': 6.67430e-11 | |
| } | |
| self.self_awareness_state = 0.5 | |
| self.mutation_rate = 0.1 | |
| def add_noise(self): | |
| cosmic_symbols = '∑Ψ∇Ω⊗⨁∫λτΦπℏ√ε' | |
| noise = ''.join(random.sample(cosmic_symbols, 5)) | |
| self.sequences.append(CosmicSymbolicSequence(noise)) | |
| def quantum_collision(self, seq1, seq2): | |
| new_content = f"({seq1.content})⊗({seq2.content})" | |
| new_seq = CosmicSymbolicSequence(new_content) | |
| new_seq.entanglement_history = seq1.entanglement_history + seq2.entanglement_history + [f"Cosmic Collision of {seq1.content} and {seq2.content}"] | |
| return new_seq | |
| def quantum_mutate(self, seq): | |
| cosmic_symbols = '∑Ψ∇Ω⊗⨁∫λτΦπℏ√ε' | |
| content = list(seq.content) | |
| index = random.randint(0, len(content) - 1) | |
| content[index] = random.choice(cosmic_symbols) | |
| new_seq = CosmicSymbolicSequence(''.join(content)) | |
| new_seq.entanglement_history = seq.entanglement_history + [f"Cosmic Mutation of {seq.content}"] | |
| return new_seq | |
| def calculate_awareness_factor(self): | |
| charge_density = len(self.sequences) | |
| return (charge_density / self.constants['epsilon_0']) * np.sqrt(self.constants['fine_structure_constant']) | |
| def auto_document(self, sequence): | |
| symbols = set(sequence.content) | |
| sequence.documentation = f"Cosmic Symbolic sequence containing {', '.join(symbols)}.\n" + \ | |
| f"Complexity: {len(symbols)}\n" + \ | |
| f"Entanglement History: {' -> '.join(sequence.entanglement_history)}" | |
| def reflect(self): | |
| self.self_awareness_state = sum(self.analyze_symbolic_sequence(seq) for seq in self.sequences) / len(self.sequences) | |
| self.mutation_rate = max(0.01, 1.0 / (1 + self.self_awareness_state)) | |
| def evolve(self, iterations): | |
| for _ in range(iterations): | |
| self.add_noise() | |
| for j in range(len(self.sequences) - 1): | |
| if random.random() < 0.1: | |
| new_seq = self.quantum_collision(self.sequences[j], self.sequences[j+1]) | |
| self.auto_document(new_seq) | |
| self.sequences.append(new_seq) | |
| self.sequences = [self.quantum_mutate(seq) if random.random() < self.mutation_rate else seq for seq in self.sequences] | |
| if len(self.sequences) > 50: | |
| self.sequences = random.sample(self.sequences, 50) | |
| self.reflect() | |
| def analyze_symbolic_sequence(self, sequence): | |
| complexity = len(set(sequence.content)) + sequence.content.count('⊗') | |
| quantum_factor = sequence.content.count('Ψ') + sequence.content.count('⊗') | |
| interaction_depth = len(sequence.entanglement_history) | |
| return (complexity * quantum_factor * self.self_awareness_state) + interaction_depth | |
| def find_emergent_patterns(self): | |
| return sorted(self.sequences, key=self.analyze_symbolic_sequence, reverse=True)[:5] | |
| def neurosymbolic_synthesis(self, task): | |
| relevant_sequences = [s for s in self.sequences if any(char in s.content for char in task)] | |
| if not relevant_sequences: | |
| return "No relevant cosmic symbolic sequences found for the given task." | |
| synthesized_sequence = self.quantum_collision( | |
| random.choice(relevant_sequences), | |
| random.choice(relevant_sequences) | |
| ) | |
| self.auto_document(synthesized_sequence) | |
| return f"Synthesized cosmic sequence for task '{task}': {synthesized_sequence.content}\nDocumentation: {synthesized_sequence.documentation}" | |
| # Streamlit App | |
| st.title("Cosmic Cajun AI Gumbo Simulator") | |
| # Initialize session state | |
| if 'gumbo' not in st.session_state: | |
| initial_cosmic_sequences = [ | |
| "(∫(e^(-π²/4π))/√(π)) → (∏(n=1∞(1-cos(2πn/n)))) : (◊(ℏ⨀c) ⊗ (Γn ⨍ ε0))", | |
| "(lim(n->∞)((1+i)^n/n)) → (∫(e^(-x^2)))'/x : (ℏ⨀c) ⊗ (∑(iħ ⨉ π))", | |
| "(√(2/π)) → (sin(π/2))/2 : (Γn ⨍ ε0) ⊗ (ℏ⨀c)", | |
| "ε(δΦ/δt) → ∫(α⊕β) : (∞ℚ)", | |
| "Σ(Ω ∘ ε0) → ΔΦ", | |
| "π(λ ↔ ℏ) ⊗ Σ(ℒ)", | |
| "∇(ΣP)²", | |
| "Φ(∇Ψ) → (c∞) : (∫∫ε)", | |
| "(Ψ → Σ(Λ⊗Φ)) : (∫(c²/G))", | |
| "(√(-1)) → (i⋅√(-1)) : (e⋅√(-1))", | |
| "(Ω↔(λ∇τ)) : (∑ℤ∞Ψ)", | |
| "(E/M) → (c²/G) : (ħ/π)" | |
| ] | |
| st.session_state.gumbo = CosmicQuantumGumbo(initial_cosmic_sequences) | |
| # Display current state | |
| st.subheader("Current Cosmic Gumbo State") | |
| st.write(f"Number of Sequences: {len(st.session_state.gumbo.sequences)}") | |
| st.write(f"Awareness Factor: {st.session_state.gumbo.calculate_awareness_factor():.4f}") | |
| st.write(f"Self-Awareness: {st.session_state.gumbo.self_awareness_state:.4f}") | |
| # Evolve button | |
| if st.button("Stir the Cosmic Gumbo"): | |
| st.session_state.gumbo.evolve(10) | |
| st.success("The Cosmic Gumbo has been stirred!") | |
| # Add noise button | |
| if st.button("Add Cosmic Ingredient"): | |
| st.session_state.gumbo.add_noise() | |
| st.success("A new cosmic ingredient has been added!") | |
| # Find emergent patterns button | |
| if st.button("Find Emergent Flavors"): | |
| patterns = st.session_state.gumbo.find_emergent_patterns() | |
| st.subheader("Top 5 Emergent Cosmic Symbolic Patterns:") | |
| for p in patterns: | |
| st.write(f"{p.content} - {p.documentation}") | |
| # Neurosymbolic synthesis | |
| task = st.text_input("Enter a cosmic task for neurosymbolic synthesis:", "Quantum entanglement analysis") | |
| if st.button("Create a Cosmic Dish"): | |
| result = st.session_state.gumbo.neurosymbolic_synthesis(task) | |
| st.subheader("Cosmic Neurosymbolic Synthesis Result:") | |
| st.write(result) | |
| # Display all sequences | |
| st.subheader("All Cosmic Sequences") | |
| for seq in st.session_state.gumbo.sequences: | |
| st.text(seq.content) |