import random import numpy as np from ..core.detector import WmDetector def generate_pastel_color(): """Generate a pastel color in HSL format.""" h = random.random() # Random hue s = 0.3 + random.random() * 0.2 # Saturation between 0.3-0.5 l = 0.8 + random.random() * 0.1 # Lightness between 0.8-0.9 return f"hsl({h*360}, {s*100}%, {l*100}%)" def color_from_score(score: float): """ Take a score between 0 and 1 and output the color. If the score is nan, returns a pastel gray color If the score is close to 0, return pastel red, if the score is close to 1 returns pastel green. """ if isinstance(score, float) and not np.isnan(score): # Red for low scores, green for high scores h = 0 if score < 0.5 else 120 # 0 = red, 120 = green s = 0.3 + 0.2 * abs(2 * score - 1) # Higher saturation for extreme values l = 0.85 # Keep lightness constant for pastel colors return f"hsl({h}, {s*100}%, {l*100}%)" return "hsl(0, 0%, 85%)" # Pastel gray for NaN def get_token_details( text: str, detector: WmDetector ) -> tuple: """ Run the detector on the text and outputs everything needed for display """ # Get scores for each token token_details = detector.get_details(text) # Get p-values for each token pvalues, aux_info = detector.get_pvalues_by_tok(token_details) display_info = [] for token_detail, pvalue in zip(token_details, pvalues): score = token_detail['score'] if token_detail['is_scored'] else float('nan') # Convert numpy types to native Python types if isinstance(score, (np.floating, np.integer)): score = float(score) if isinstance(pvalue, (np.floating, np.integer)): pvalue = float(pvalue) display_info.append({ 'is_scored': token_detail['is_scored'], 'token': token_detail['token_text'], 'color': color_from_score(score), 'score': score, 'pvalue': pvalue }) # Add summary statistics and convert numpy types to native Python types display_info.append({ 'final_score': float(aux_info['final_score']), 'ntoks_scored': int(aux_info['ntoks_scored']), 'final_pvalue': float(aux_info['final_pvalue']) }) return display_info def template_prompt(instruction: str, prompt_type: str = "smollm") -> str: """Template a prompt according to the model's format. Args: instruction: The raw prompt/instruction to template prompt_type: Type of prompt format (smollm, alpaca) Returns: The formatted prompt ready for the model """ if prompt_type == "alpaca": return instruction elif prompt_type == "smollm": prompt = "<|im_start|>system\nYou are a helpful AI assistant named SmolLM, trained by Hugging Face<|im_end|>\n" prompt += f"<|im_start|>user\n{instruction}<|im_end|>\n<|im_start|>assistant\n" return prompt else: raise ValueError(f"Prompt type {prompt_type} not supported")