FinLLaVA / app.py
amstrongzyf's picture
Update app.py
5693cbb verified
raw
history blame
3.8 kB
import time
from threading import Thread
import copy
import gradio as gr
import torch
from transformers import AutoProcessor, LlavaForConditionalGeneration, TextIteratorStreamer
from llava_llama3.model.builder import load_pretrained_model
from llava_llama3.serve.cli import chat_llava
import os
import argparse
# Set environment variables
root_path = os.path.dirname(os.path.abspath(__file__))
print(f'\033[92m{root_path}\033[0m')
os.environ['GRADIO_TEMP_DIR'] = root_path
# Create a default arguments object
default_args = argparse.Namespace(
model_path="TheFinAI/FinLLaVA",
device="cuda",
conv_mode="llama_3",
temperature=0.7,
max_new_tokens=512,
load_8bit=False,
load_4bit=False
)
# Load the model
tokenizer, llava_model, image_processor, context_len = load_pretrained_model(
default_args.model_path,
None,
'llava_llama3',
default_args.load_8bit,
default_args.load_4bit,
device=default_args.device
)
def bot_streaming(message, history, temperature, max_new_tokens):
image_file = None
if message["files"]:
if isinstance(message["files"][-1], dict):
image_file = message["files"][-1]["path"]
else:
image_file = message["files"][-1]
else:
for hist in history:
if isinstance(hist[0], tuple):
image_file = hist[0][0]
if image_file is None:
gr.Error("You need to upload an image for LLaVA to work.")
return
args = copy.deepcopy(default_args)
args.temperature = temperature
args.max_new_tokens = max_new_tokens
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
def generate():
print('\033[92mRunning chat\033[0m')
return chat_llava(
args=args,
image_file=image_file,
text=message['text'],
tokenizer=tokenizer,
model=llava_model,
image_processor=image_processor,
context_len=context_len,
streamer=streamer
)
thread = Thread(target=generate)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
time.sleep(0.06)
yield buffer
# Define CSS styles
css = """
body {
font-family: Arial, sans-serif;
}
.gradio-container {
max-width: 800px;
margin: auto;
}
.chatbot {
height: 400px;
overflow-y: auto;
}
"""
# Create interface using gr.Blocks
with gr.Blocks(css=css) as demo:
gr.Markdown("# FinLLaVA Demo")
chatbot = gr.Chatbot(scale=1)
chat_input = gr.MultimodalTextbox(
interactive=True,
file_types=["image"],
placeholder="Enter message or upload file...",
show_label=False
)
with gr.Accordion("Advanced Settings", open=False):
temperature = gr.Slider(
label="Temperature",
minimum=0.1,
maximum=2.0,
step=0.1,
value=default_args.temperature
)
max_new_tokens = gr.Slider(
label="Max New Tokens",
minimum=1,
maximum=1024,
step=1,
value=default_args.max_new_tokens
)
chat_interface = gr.ChatInterface(
fn=bot_streaming,
chatbot=chatbot,
textbox=chat_input,
additional_inputs=[temperature, max_new_tokens],
examples=[
{"text": "What is in this picture?", "files": ["http://images.cocodataset.org/val2017/000000039769.jpg"]},
],
title="",
description="",
theme="soft",
retry_btn="Retry",
undo_btn="Undo",
clear_btn="Clear",
)
if __name__ == "__main__":
demo.queue(api_open=False).launch(share=False, debug=True)