import torch from torch import nn import random class Encoder(nn.Module): def __init__(self, vocab_size, dim_embed, dim_hidden, dim_feedforward, num_layers, dropout_probability=0.1): super().__init__() self.embd_layer = nn.Embedding(vocab_size, dim_embed) self.dropout = nn.Dropout(dropout_probability) self.rnn = nn.GRU(dim_embed, dim_hidden, num_layers=num_layers, dropout=dropout_probability,batch_first=True, bidirectional=True) self.ff = nn.Sequential(nn.Linear(dim_hidden*2, dim_feedforward), nn.ReLU(), nn.Linear(dim_feedforward, dim_hidden), nn.Dropout(dropout_probability)) def forward(self, x): embds = self.dropout(self.embd_layer(x)) output, hidden = self.rnn(embds) ## hidden[-2,:,:]: hidden state for the forward direction of the last layer. ## hidden[-1,:,:]: hidden state for the backward direction of the last layer. last_hidden = torch.cat([hidden[-2,:,:], hidden[-1,:,:]], dim=-1) projected_hidden = self.ff(last_hidden) return projected_hidden class Decoder(nn.Module): def __init__(self, vocab_size, dim_embed, dim_hidden, num_layers, dropout_probability=0.1): super().__init__() self.embd_layer = nn.Embedding(vocab_size, dim_embed) self.dropout = nn.Dropout(dropout_probability) self.rnn = nn.GRU(dim_embed, dim_hidden, num_layers=num_layers, dropout=dropout_probability, batch_first=True) self.ffw = nn.Linear(dim_hidden, dim_hidden) def forward(self, x, hidden_t_1): embds = self.dropout(self.embd_layer(x)) output, hidden_t = self.rnn(embds, hidden_t_1) out = self.ffw(hidden_t[-1]) return out, hidden_t class Seq2seq_no_attention(nn.Module): def __init__(self, vocab_size:int, dim_embed:int, dim_model:int, dim_feedforward:int, num_layers:int, dropout_probability:float): super(Seq2seq_no_attention, self).__init__() self.vocab_size = vocab_size self.num_layers = num_layers self.encoder = Encoder(vocab_size, dim_embed, dim_model, dim_feedforward, num_layers, dropout_probability) self.decoder = Decoder(vocab_size, dim_embed, dim_model, num_layers, dropout_probability) self.classifier = nn.Linear(dim_model, vocab_size) ## weight sharing between classifier and embed_shared_src_trg_cls self.encoder.embd_layer.weight = self.classifier.weight self.decoder.embd_layer.weight = self.classifier.weight def forward(self, source, target, pad_tokenId): # target = text # teacher_force_ratio = 0.5 B, T = target.size() total_logits = torch.zeros(B, T, self.vocab_size, device=source.device) # (B,T,vocab_size) context = self.encoder(source) # (B, dim_model) ## We will pass the hiddens for each layer of the decoder (inspired by Attention is all you need paper) context = context.unsqueeze(0).repeat(self.num_layers,1,1) # (numlayer, B, dim_model) for step in range(T): step_token = target[:, [step]] out, context = self.decoder(step_token, context) logits = self.classifier(out).squeeze(1) total_logits[:, step] = logits loss = None if T > 1: flat_logits = total_logits[:,:-1,:].reshape(-1, total_logits.size(-1)) flat_targets = target[:,1:].reshape(-1) loss = nn.functional.cross_entropy(flat_logits, flat_targets, ignore_index=pad_tokenId) return total_logits, loss @torch.no_grad def greedy_decode_fast(self, source:torch.Tensor, sos_tokenId: int, eos_tokenId:int, pad_tokenId, max_tries=50): self.eval() targets_hat = [sos_tokenId] context = self.encoder(source.unsqueeze(0)) context = context.unsqueeze(0).repeat(self.num_layers,1,1) for step in range(max_tries): x = torch.tensor([targets_hat[step]]).unsqueeze(0).to(source.device) out, context = self.decoder(x, context) logits = self.classifier(out) top1 = logits.argmax(-1) targets_hat.append(top1.item()) if top1 == eos_tokenId: return targets_hat return targets_hat