Abdelrhman Ashraf
commited on
Commit
·
d80a8bb
1
Parent(s):
88fa37a
Add translation application with greedy and beam search methods
Browse files
app.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from Models.ModelArgs import ModelArgs
|
3 |
+
from Models.AutoModel import get_model
|
4 |
+
from gradio_utils import Callable_tokenizer, greedy_decode
|
5 |
+
import gradio as gr
|
6 |
+
|
7 |
+
def en_translate_ar_beam(text, model, tokenizer, max_tries=50):
|
8 |
+
return "future work"
|
9 |
+
|
10 |
+
|
11 |
+
def en_translate_ar_greedy(text, model, tokenizer, max_tries=50):
|
12 |
+
source_tensor = torch.tensor(tokenizer(text)).unsqueeze(0)
|
13 |
+
target_tokens = greedy_decode(model, source_tensor,
|
14 |
+
tokenizer.get_tokenId('<s>'),
|
15 |
+
tokenizer.get_tokenId('</s>'),
|
16 |
+
tokenizer.get_tokenId('<pad>'), max_tries)
|
17 |
+
|
18 |
+
return tokenizer.decode(target_tokens)
|
19 |
+
|
20 |
+
|
21 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
22 |
+
tokenizer = Callable_tokenizer('./assets/tokenizers/en-ar_tokenizer.model')
|
23 |
+
|
24 |
+
model_state_dict = torch.load("./assets/models/en-ar_s2sAttention.pth", map_location=device, weights_only=True)['model_state_dict']
|
25 |
+
model_args = ModelArgs('s2sattention', "./Configurations/s2sattention_model_config.json")
|
26 |
+
s2sattention = get_model(model_args, len(tokenizer))
|
27 |
+
s2sattention.load_state_dict(model_state_dict)
|
28 |
+
s2sattention.to(device)
|
29 |
+
s2sattention.eval()
|
30 |
+
|
31 |
+
model_state_dict = torch.load("./assets/models/en-ar_s2s.pth", map_location=device, weights_only=True)['model_state_dict']
|
32 |
+
model_args = ModelArgs('s2s', "./Configurations/s2s_model_config.json")
|
33 |
+
s2s = get_model(model_args, len(tokenizer))
|
34 |
+
s2s.load_state_dict(model_state_dict)
|
35 |
+
s2s.to(device)
|
36 |
+
s2s.eval()
|
37 |
+
|
38 |
+
model_state_dict = torch.load("./assets/models/en-ar_transformer.pth", map_location=device, weights_only=True)['model_state_dict']
|
39 |
+
model_args = ModelArgs('transformer', "./Configurations/transformer_model_config.json")
|
40 |
+
transformer = get_model(model_args, len(tokenizer))
|
41 |
+
transformer.load_state_dict(model_state_dict)
|
42 |
+
transformer.to(device)
|
43 |
+
transformer.eval()
|
44 |
+
|
45 |
+
|
46 |
+
def launch_translation_greedy(raw_input, maxtries=50):
|
47 |
+
transformer_out = en_translate_ar_greedy(raw_input, transformer, tokenizer, maxtries)
|
48 |
+
s2sattention_out = en_translate_ar_greedy(raw_input, s2sattention, tokenizer, maxtries)
|
49 |
+
s2s_out = en_translate_ar_greedy(raw_input, s2s, tokenizer, maxtries)
|
50 |
+
return transformer_out, s2sattention_out, s2s_out,
|
51 |
+
|
52 |
+
|
53 |
+
def launch_translation_beam(raw_input, maxtries=50):
|
54 |
+
transformer_out = en_translate_ar_beam(raw_input, transformer, tokenizer, maxtries)
|
55 |
+
s2sattention_out = en_translate_ar_beam(raw_input, s2sattention, tokenizer, maxtries)
|
56 |
+
s2s_out = en_translate_ar_beam(raw_input, s2s, tokenizer, maxtries)
|
57 |
+
return transformer_out, s2sattention_out, s2s_out
|
58 |
+
|
59 |
+
|
60 |
+
custom_css ='.gr-button {background-color: #bf4b04; color: white;}'
|
61 |
+
with gr.Blocks(css=custom_css) as demo:
|
62 |
+
with gr.Row():
|
63 |
+
with gr.Column():
|
64 |
+
input_text = gr.Textbox(label='English Sentence')
|
65 |
+
gr.Examples(['How are you?',
|
66 |
+
'She is a good girl.',
|
67 |
+
'Who is better than me?!',
|
68 |
+
'is tom looking at me?',
|
69 |
+
'when was the last time we met?'],
|
70 |
+
inputs=input_text, label="Examples: ")
|
71 |
+
with gr.Column():
|
72 |
+
output1 = gr.Textbox(label="Arabic Transformer Translation")
|
73 |
+
output2 = gr.Textbox(label="Arabic seq2seq with Attention Translation")
|
74 |
+
output3 = gr.Textbox(label="Arabic seq2seq No Attention Translation")
|
75 |
+
|
76 |
+
start_greedy_btn = gr.Button(value='Arabic Translation (Greedy search)', elem_classes=["gr-button"])
|
77 |
+
start_beam_btn = gr.Button(value='Arabic Translation (Beam search)', elem_classes=["gr-button"])
|
78 |
+
|
79 |
+
start_greedy_btn.click(fn=launch_translation_greedy, inputs=input_text, outputs=[output1, output2, output3])
|
80 |
+
start_beam_btn.click(fn=launch_translation_beam, inputs=input_text, outputs=[output1, output2, output3])
|
81 |
+
|
82 |
+
|
83 |
+
demo.launch()
|