Abdelrhman Ashraf
commited on
Commit
·
d80a8bb
1
Parent(s):
88fa37a
Add translation application with greedy and beam search methods
Browse files
app.py
ADDED
|
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from Models.ModelArgs import ModelArgs
|
| 3 |
+
from Models.AutoModel import get_model
|
| 4 |
+
from gradio_utils import Callable_tokenizer, greedy_decode
|
| 5 |
+
import gradio as gr
|
| 6 |
+
|
| 7 |
+
def en_translate_ar_beam(text, model, tokenizer, max_tries=50):
|
| 8 |
+
return "future work"
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def en_translate_ar_greedy(text, model, tokenizer, max_tries=50):
|
| 12 |
+
source_tensor = torch.tensor(tokenizer(text)).unsqueeze(0)
|
| 13 |
+
target_tokens = greedy_decode(model, source_tensor,
|
| 14 |
+
tokenizer.get_tokenId('<s>'),
|
| 15 |
+
tokenizer.get_tokenId('</s>'),
|
| 16 |
+
tokenizer.get_tokenId('<pad>'), max_tries)
|
| 17 |
+
|
| 18 |
+
return tokenizer.decode(target_tokens)
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 22 |
+
tokenizer = Callable_tokenizer('./assets/tokenizers/en-ar_tokenizer.model')
|
| 23 |
+
|
| 24 |
+
model_state_dict = torch.load("./assets/models/en-ar_s2sAttention.pth", map_location=device, weights_only=True)['model_state_dict']
|
| 25 |
+
model_args = ModelArgs('s2sattention', "./Configurations/s2sattention_model_config.json")
|
| 26 |
+
s2sattention = get_model(model_args, len(tokenizer))
|
| 27 |
+
s2sattention.load_state_dict(model_state_dict)
|
| 28 |
+
s2sattention.to(device)
|
| 29 |
+
s2sattention.eval()
|
| 30 |
+
|
| 31 |
+
model_state_dict = torch.load("./assets/models/en-ar_s2s.pth", map_location=device, weights_only=True)['model_state_dict']
|
| 32 |
+
model_args = ModelArgs('s2s', "./Configurations/s2s_model_config.json")
|
| 33 |
+
s2s = get_model(model_args, len(tokenizer))
|
| 34 |
+
s2s.load_state_dict(model_state_dict)
|
| 35 |
+
s2s.to(device)
|
| 36 |
+
s2s.eval()
|
| 37 |
+
|
| 38 |
+
model_state_dict = torch.load("./assets/models/en-ar_transformer.pth", map_location=device, weights_only=True)['model_state_dict']
|
| 39 |
+
model_args = ModelArgs('transformer', "./Configurations/transformer_model_config.json")
|
| 40 |
+
transformer = get_model(model_args, len(tokenizer))
|
| 41 |
+
transformer.load_state_dict(model_state_dict)
|
| 42 |
+
transformer.to(device)
|
| 43 |
+
transformer.eval()
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def launch_translation_greedy(raw_input, maxtries=50):
|
| 47 |
+
transformer_out = en_translate_ar_greedy(raw_input, transformer, tokenizer, maxtries)
|
| 48 |
+
s2sattention_out = en_translate_ar_greedy(raw_input, s2sattention, tokenizer, maxtries)
|
| 49 |
+
s2s_out = en_translate_ar_greedy(raw_input, s2s, tokenizer, maxtries)
|
| 50 |
+
return transformer_out, s2sattention_out, s2s_out,
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def launch_translation_beam(raw_input, maxtries=50):
|
| 54 |
+
transformer_out = en_translate_ar_beam(raw_input, transformer, tokenizer, maxtries)
|
| 55 |
+
s2sattention_out = en_translate_ar_beam(raw_input, s2sattention, tokenizer, maxtries)
|
| 56 |
+
s2s_out = en_translate_ar_beam(raw_input, s2s, tokenizer, maxtries)
|
| 57 |
+
return transformer_out, s2sattention_out, s2s_out
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
custom_css ='.gr-button {background-color: #bf4b04; color: white;}'
|
| 61 |
+
with gr.Blocks(css=custom_css) as demo:
|
| 62 |
+
with gr.Row():
|
| 63 |
+
with gr.Column():
|
| 64 |
+
input_text = gr.Textbox(label='English Sentence')
|
| 65 |
+
gr.Examples(['How are you?',
|
| 66 |
+
'She is a good girl.',
|
| 67 |
+
'Who is better than me?!',
|
| 68 |
+
'is tom looking at me?',
|
| 69 |
+
'when was the last time we met?'],
|
| 70 |
+
inputs=input_text, label="Examples: ")
|
| 71 |
+
with gr.Column():
|
| 72 |
+
output1 = gr.Textbox(label="Arabic Transformer Translation")
|
| 73 |
+
output2 = gr.Textbox(label="Arabic seq2seq with Attention Translation")
|
| 74 |
+
output3 = gr.Textbox(label="Arabic seq2seq No Attention Translation")
|
| 75 |
+
|
| 76 |
+
start_greedy_btn = gr.Button(value='Arabic Translation (Greedy search)', elem_classes=["gr-button"])
|
| 77 |
+
start_beam_btn = gr.Button(value='Arabic Translation (Beam search)', elem_classes=["gr-button"])
|
| 78 |
+
|
| 79 |
+
start_greedy_btn.click(fn=launch_translation_greedy, inputs=input_text, outputs=[output1, output2, output3])
|
| 80 |
+
start_beam_btn.click(fn=launch_translation_beam, inputs=input_text, outputs=[output1, output2, output3])
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
demo.launch()
|