ChessAnalyzer / app.py
Narendra9009's picture
instead of reversing the array, the indices are changed in the get coordinate funciton
e647ee0 verified
raw
history blame
6.37 kB
from ultralytics import YOLO
import cv2
from stockfish import Stockfish
import os
import numpy as np
import streamlit as st
# Constants
FEN_MAPPING = {
"black-pawn": "p", "black-rook": "r", "black-knight": "n", "black-bishop": "b", "black-queen": "q", "black-king": "k",
"white-pawn": "P", "white-rook": "R", "white-knight": "N", "white-bishop": "B", "white-queen": "Q", "white-king": "K"
}
GRID_BORDER = 5 # Border size in pixels
GRID_SIZE = 214 # Effective grid size (10px to 214px)
BLOCK_SIZE = GRID_SIZE // 8 # Each block is ~25px
X_LABELS = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'] # Labels for x-axis (a to h)
Y_LABELS = [8, 7, 6, 5, 4, 3, 2, 1] # Reversed labels for y-axis (8 to 1)
# Functions
def get_grid_coordinate(pixel_x, pixel_y, perspective):
"""
Function to determine the grid coordinate of a pixel, considering a 10px border and
the grid where bottom-left is (a, 1) and top-left is (h, 8).
The perspective argument can adjust for white ('w') or black ('b') viewpoint.
"""
# Grid settings
border = 5 # 10px border
grid_size = 214 # Effective grid size (10px to 214px)
block_size = grid_size // 8 # Each block is ~25px
x_labels = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'] # Labels for x-axis (a to h)
y_labels = [8, 7, 6, 5, 4, 3, 2, 1] # Reversed labels for y-axis (8 to 1)
# Adjust pixel_x and pixel_y by subtracting the border (grid starts at pixel 10)
adjusted_x = pixel_x - border
adjusted_y = pixel_y - border
# Check bounds
if adjusted_x < 0 or adjusted_y < 0 or adjusted_x >= grid_size or adjusted_y >= grid_size:
return "Pixel outside grid bounds"
# Determine the grid column and row
x_index = adjusted_x // block_size
y_index = adjusted_y // block_size
if x_index < 0 or x_index >= len(x_labels) or y_index < 0 or y_index >= len(y_labels):
return "Pixel outside grid bounds"
# Adjust labels based on perspective
if perspective == "b":
x_index = 7 - x_index # Flip x-axis for black's perspective
y_index = 7- y_index # Flip y-axis for black's perspective
file = x_labels[x_index]
rank = y_labels[y_index]
return f"{file}{rank}"
def predict_next_move(fen, stockfish):
"""
Predict the next move using Stockfish.
"""
if stockfish.is_fen_valid(fen):
stockfish.set_fen_position(fen)
else:
return "Invalid FEN notation!"
best_move = stockfish.get_best_move()
return f"The predicted next move is: {best_move}" if best_move else "No valid move found (checkmate/stalemate)."
def main():
st.title("Chessboard Position Detection and Move Prediction")
# Set permissions for the Stockfish engine binary
os.chmod("/home/user/app/stockfish-ubuntu-x86-64-sse41-popcnt", 0o755)
# User uploads an image or captures it from their camera
image_file = st.camera_input("Capture a chessboard image") or st.file_uploader("Upload a chessboard image", type=["jpg", "jpeg", "png"])
if image_file is not None:
# Save the image to a temporary file
temp_dir = "temp_images"
os.makedirs(temp_dir, exist_ok=True)
temp_file_path = os.path.join(temp_dir, "uploaded_image.jpg")
with open(temp_file_path, "wb") as f:
f.write(image_file.getbuffer())
# Load the YOLO models
model = YOLO("fine_tuned_on_all_data.pt") # Replace with your trained model weights file
seg_model = YOLO("segmentation.pt")
# Load and process the image
img = cv2.imread(temp_file_path)
r = seg_model.predict(source=temp_file_path)
xyxy = r[0].boxes.xyxy
x_min, y_min, x_max, y_max = map(int, xyxy[0])
new_img = img[y_min:y_max, x_min:x_max]
# Resize the image to 224x224
image = cv2.resize(new_img, (224, 224))
height, width, _ = image.shape
# Get user input for perspective
p = st.radio("Select perspective:", ["b (Black)", "w (White)"])
p = p[0].lower()
# Initialize the board for FEN (empty rows represented by "8")
board = [["8"] * 8 for _ in range(8)]
# Run detection
results = model.predict(source=image, save=False, save_txt=False, conf=0.7)
# Extract predictions and map to FEN board
for result in results[0].boxes:
x1, y1, x2, y2 = result.xyxy[0].tolist()
class_id = int(result.cls[0])
class_name = model.names[class_id]
fen_piece = FEN_MAPPING.get(class_name, None)
if not fen_piece:
continue
center_x = (x1 + x2) / 2
center_y = (y1 + y2) / 2
pixel_x = int(center_x)
pixel_y = int(height - center_y)
grid_position = get_grid_coordinate(pixel_x, pixel_y, p)
if grid_position != "Pixel outside grid bounds":
file = ord(grid_position[0]) - ord('a')
rank = int(grid_position[1]) - 1
board[rank][file] = fen_piece
# Generate the FEN string
fen_rows = []
for row in board:
fen_row = ""
empty_count = 0
for cell in row:
if cell == "8":
empty_count += 1
else:
if empty_count > 0:
fen_row += str(empty_count)
empty_count = 0
fen_row += cell
if empty_count > 0:
fen_row += str(empty_count)
fen_rows.append(fen_row)
position_fen = "/".join(fen_rows)
move_side = st.radio("Select the side to move:", ["w (White)", "b (Black)"])[0].lower()
fen_notation = f"{position_fen} {move_side} - - 0 0"
st.subheader("Generated FEN Notation:")
st.code(fen_notation)
# Initialize the Stockfish engine
stockfish_path = os.path.join(os.getcwd(), "stockfish-ubuntu-x86-64-sse41-popcnt")
stockfish = Stockfish(
path=stockfish_path,
depth=15,
parameters={"Threads": 2, "Minimum Thinking Time": 30}
)
# Predict the next move
next_move = predict_next_move(fen_notation, stockfish)
st.subheader("Stockfish Recommended Move:")
st.write(next_move)
if __name__ == "__main__":
main()