Delete embedding.py
Browse files- embedding.py +0 -370
embedding.py
DELETED
@@ -1,370 +0,0 @@
|
|
1 |
-
from PyPDF2 import PdfReader
|
2 |
-
import requests
|
3 |
-
import json
|
4 |
-
import os
|
5 |
-
import concurrent.futures
|
6 |
-
import random
|
7 |
-
from langchain_google_genai import ChatGoogleGenerativeAI
|
8 |
-
from langchain_community.document_loaders import WebBaseLoader
|
9 |
-
from langchain_community.document_loaders import PyPDFLoader
|
10 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
11 |
-
import google.generativeai as genai
|
12 |
-
from langchain_core.messages import HumanMessage
|
13 |
-
from io import BytesIO
|
14 |
-
import numpy as np
|
15 |
-
import re
|
16 |
-
import torch
|
17 |
-
from transformers import AutoTokenizer, AutoModel
|
18 |
-
|
19 |
-
from search import search_images
|
20 |
-
|
21 |
-
gemini = ChatGoogleGenerativeAI(model="gemini-1.0-pro-001",google_api_key='AIzaSyCo-TeDp0Ou--UwhlTgMwCoTEZxg6-v7wA',temperature = 0.1)
|
22 |
-
gemini1 = ChatGoogleGenerativeAI(model="gemini-1.0-pro-001",google_api_key='AIzaSyAtnUk8QKSUoJd3uOBpmeBNN-t8WXBt0zI',temperature = 0.1)
|
23 |
-
gemini2 = ChatGoogleGenerativeAI(model="gemini-1.0-pro-001",google_api_key='AIzaSyBzbZQBffHFK3N-gWnhDDNbQ9yZnZtaS2E',temperature = 0.1)
|
24 |
-
gemini3 = ChatGoogleGenerativeAI(model="gemini-1.0-pro-001",google_api_key='AIzaSyBNN4VDMAOB2gSZha6HjsTuH71PVV69FLM',temperature = 0.1)
|
25 |
-
|
26 |
-
vision = ChatGoogleGenerativeAI(model="gemini-1.5-flash",google_api_key='AIzaSyCo-TeDp0Ou--UwhlTgMwCoTEZxg6-v7wA',temperature = 0.1)
|
27 |
-
vision1 = ChatGoogleGenerativeAI(model="gemini-1.5-flash",google_api_key='AIzaSyAtnUk8QKSUoJd3uOBpmeBNN-t8WXBt0zI',temperature = 0.1)
|
28 |
-
vision2 = ChatGoogleGenerativeAI(model="gemini-1.5-flash",google_api_key='AIzaSyBzbZQBffHFK3N-gWnhDDNbQ9yZnZtaS2E',temperature = 0.1)
|
29 |
-
vision3 = ChatGoogleGenerativeAI(model="gemini-1.5-flash",google_api_key='AIzaSyBNN4VDMAOB2gSZha6HjsTuH71PVV69FLM',temperature = 0.1)
|
30 |
-
|
31 |
-
tokenizer = AutoTokenizer.from_pretrained('Alibaba-NLP/gte-base-en-v1.5',trust_remote_code = True)
|
32 |
-
model = AutoModel.from_pretrained('Alibaba-NLP/gte-base-en-v1.5',trust_remote_code = True)
|
33 |
-
model.to('cpu') # Ensure the model is on the CPU
|
34 |
-
|
35 |
-
|
36 |
-
genai.configure(api_key="AIzaSyAtnUk8QKSUoJd3uOBpmeBNN-t8WXBt0zI")
|
37 |
-
|
38 |
-
def pdf_extractor(link):
|
39 |
-
text = ''
|
40 |
-
|
41 |
-
try:
|
42 |
-
# Fetch the PDF file from the URL
|
43 |
-
response = requests.get(link)
|
44 |
-
response.raise_for_status() # Raise an error for bad status codes
|
45 |
-
|
46 |
-
# Use BytesIO to handle the PDF content in memory
|
47 |
-
pdf_file = BytesIO(response.content)
|
48 |
-
|
49 |
-
# Load the PDF file
|
50 |
-
reader = PdfReader(pdf_file)
|
51 |
-
for page in reader.pages:
|
52 |
-
text += page.extract_text() # Extract text from each page
|
53 |
-
|
54 |
-
except requests.exceptions.HTTPError as e:
|
55 |
-
print(f'HTTP error occurred: {e}')
|
56 |
-
except Exception as e:
|
57 |
-
print(f'An error occurred: {e}')
|
58 |
-
|
59 |
-
return text
|
60 |
-
|
61 |
-
def web_extractor(link):
|
62 |
-
text = ''
|
63 |
-
|
64 |
-
try:
|
65 |
-
loader = WebBaseLoader(link)
|
66 |
-
pages = loader.load_and_split()
|
67 |
-
|
68 |
-
for page in pages:
|
69 |
-
text+=page.page_content
|
70 |
-
except:
|
71 |
-
pass
|
72 |
-
|
73 |
-
return text
|
74 |
-
|
75 |
-
def imporve_text(text):
|
76 |
-
|
77 |
-
prompt = f'''
|
78 |
-
Please rewrite the following text to make it short, concise, and of high quality.
|
79 |
-
Ensure that all essential information and key points are retained.
|
80 |
-
Focus on improving clarity, coherence, and word choice without altering the original meaning.
|
81 |
-
|
82 |
-
text = {text}
|
83 |
-
'''
|
84 |
-
|
85 |
-
model = random.choice([gemini,gemini1,gemini2,gemini3])
|
86 |
-
result = model.invoke(prompt)
|
87 |
-
|
88 |
-
return result.content
|
89 |
-
|
90 |
-
def feature_extraction(tag, history , context):
|
91 |
-
|
92 |
-
prompt = f'''
|
93 |
-
You are an intelligent assistant tasked with updating product information. You have two data sources:
|
94 |
-
1. Tag_History: Previously gathered information about the product.
|
95 |
-
2. Tag_Context: New data that might contain additional details.
|
96 |
-
Your job is to read the Tag_Context and update the relevant field in the Tag_History with any new details found. The field to be updated is the {tag} FIELD.
|
97 |
-
Guidelines:
|
98 |
-
- Only add new details that are relevant to the {tag} FIELD.
|
99 |
-
- Do not add or modify any other fields in the Tag_History.
|
100 |
-
- Ensure your response is in coherent sentences, integrating the new details seamlessly into the existing information.
|
101 |
-
Here is the data:
|
102 |
-
Tag_Context: {str(context)}
|
103 |
-
Tag_History: {history}
|
104 |
-
Respond with the updated Tag_History.
|
105 |
-
'''
|
106 |
-
|
107 |
-
model = random.choice([gemini,gemini1,gemini2,gemini3])
|
108 |
-
result = model.invoke(prompt)
|
109 |
-
|
110 |
-
return result.content
|
111 |
-
|
112 |
-
def feature_extraction_image(url):
|
113 |
-
text = ' '
|
114 |
-
model = genai.GenerativeModel('gemini-1.5-flash-001')
|
115 |
-
try:
|
116 |
-
res = model.generate_content(['Describe this image to me',url])
|
117 |
-
text = res.text
|
118 |
-
|
119 |
-
except:
|
120 |
-
pass
|
121 |
-
return text
|
122 |
-
|
123 |
-
def detailed_feature_extraction(find, context):
|
124 |
-
|
125 |
-
prompt = f'''
|
126 |
-
You are an intelligent assistant tasked with finding product information. You have one data source and one output format:
|
127 |
-
1. Context: The gathered information about the product.
|
128 |
-
2. Format: Details which need to be filled based on Context.
|
129 |
-
Your job is to read the Context and update the relevant field in Format using Context.
|
130 |
-
Guidelines:
|
131 |
-
- Only add details that are relevant to the individual FIELD.
|
132 |
-
- Do not add or modify any other fields in the Format.
|
133 |
-
- If nothing found return None.
|
134 |
-
Here is the data:
|
135 |
-
The Context is {str(context)}
|
136 |
-
The Format is {str(find)}
|
137 |
-
'''
|
138 |
-
|
139 |
-
model = random.choice([gemini,gemini1,gemini2,gemini3])
|
140 |
-
result = model.invoke(prompt)
|
141 |
-
|
142 |
-
return result.content
|
143 |
-
|
144 |
-
def detailed_history(history):
|
145 |
-
|
146 |
-
details = {
|
147 |
-
"Introduction": {
|
148 |
-
"Product Name": None,
|
149 |
-
"Overview of the product": None,
|
150 |
-
"Purpose of the manual": None,
|
151 |
-
"Audience": None,
|
152 |
-
"Additional Details": None
|
153 |
-
},
|
154 |
-
"Specifications": {
|
155 |
-
"Technical specifications": None,
|
156 |
-
"Performance metrics": None,
|
157 |
-
"Additional Details": None
|
158 |
-
},
|
159 |
-
"Product Overview": {
|
160 |
-
"Product features": None,
|
161 |
-
"Key components and parts": None,
|
162 |
-
"Additional Details": None
|
163 |
-
},
|
164 |
-
"Safety Information": {
|
165 |
-
"Safety warnings and precautions": None,
|
166 |
-
"Compliance and certification information": None,
|
167 |
-
"Additional Details": None
|
168 |
-
},
|
169 |
-
"Installation Instructions": {
|
170 |
-
"Unboxing and inventory checklist": None,
|
171 |
-
"Step-by-step installation guide": None,
|
172 |
-
"Required tools and materials": None,
|
173 |
-
"Additional Details": None
|
174 |
-
},
|
175 |
-
"Setup and Configuration": {
|
176 |
-
"Initial setup procedures": None,
|
177 |
-
"Configuration settings": None,
|
178 |
-
"Troubleshooting setup issues": None,
|
179 |
-
"Additional Details": None
|
180 |
-
},
|
181 |
-
"Operation Instructions": {
|
182 |
-
"How to use the product": None,
|
183 |
-
"Detailed instructions for different functionalities": None,
|
184 |
-
"User interface guide": None,
|
185 |
-
"Additional Details": None
|
186 |
-
},
|
187 |
-
"Maintenance and Care": {
|
188 |
-
"Cleaning instructions": None,
|
189 |
-
"Maintenance schedule": None,
|
190 |
-
"Replacement parts and accessories": None,
|
191 |
-
"Additional Details": None
|
192 |
-
},
|
193 |
-
"Troubleshooting": {
|
194 |
-
"Common issues and solutions": None,
|
195 |
-
"Error messages and their meanings": None,
|
196 |
-
"Support Information": None,
|
197 |
-
"Additional Details": None
|
198 |
-
},
|
199 |
-
"Warranty Information": {
|
200 |
-
"Terms and Conditions": None,
|
201 |
-
"Service and repair information": None,
|
202 |
-
"Additional Details": None
|
203 |
-
},
|
204 |
-
"Legal Information": {
|
205 |
-
"Copyright information": None,
|
206 |
-
"Trademarks and patents": None,
|
207 |
-
"Disclaimers": None,
|
208 |
-
"Additional Details": None
|
209 |
-
|
210 |
-
}
|
211 |
-
}
|
212 |
-
|
213 |
-
for key,val in history.items():
|
214 |
-
|
215 |
-
find = details[key]
|
216 |
-
|
217 |
-
details[key] = str(detailed_feature_extraction(find,val))
|
218 |
-
|
219 |
-
return details
|
220 |
-
|
221 |
-
|
222 |
-
def get_embeddings(link,tag_option):
|
223 |
-
|
224 |
-
print(f"\n--> Creating Embeddings - {link}")
|
225 |
-
|
226 |
-
if tag_option=='Complete Document Similarity':
|
227 |
-
history = { "Details": "" }
|
228 |
-
|
229 |
-
else:
|
230 |
-
history = {
|
231 |
-
"Introduction": "",
|
232 |
-
"Specifications": "",
|
233 |
-
"Product Overview": "",
|
234 |
-
"Safety Information": "",
|
235 |
-
"Installation Instructions": "",
|
236 |
-
"Setup and Configuration": "",
|
237 |
-
"Operation Instructions": "",
|
238 |
-
"Maintenance and Care": "",
|
239 |
-
"Troubleshooting": "",
|
240 |
-
"Warranty Information": "",
|
241 |
-
"Legal Information": ""
|
242 |
-
}
|
243 |
-
|
244 |
-
# Extract Text -----------------------------
|
245 |
-
print("Extracting Text")
|
246 |
-
if link[-3:] == '.md' or link[8:11] == 'en.':
|
247 |
-
text = web_extractor(link)
|
248 |
-
else:
|
249 |
-
text = pdf_extractor(link)
|
250 |
-
|
251 |
-
# Create Chunks ----------------------------
|
252 |
-
print("Writing Tag Data")
|
253 |
-
|
254 |
-
if tag_option=="Complete Document Similarity":
|
255 |
-
history["Details"] = feature_extraction("Details", history["Details"], text[0][:50000])
|
256 |
-
|
257 |
-
else:
|
258 |
-
chunks = text_splitter.create_documents(text)
|
259 |
-
|
260 |
-
for chunk in chunks:
|
261 |
-
|
262 |
-
with concurrent.futures.ThreadPoolExecutor() as executor:
|
263 |
-
future_to_key = {
|
264 |
-
executor.submit(
|
265 |
-
feature_extraction, f"Product {key}", history[key], chunk.page_content
|
266 |
-
): key for key in history
|
267 |
-
}
|
268 |
-
for future in concurrent.futures.as_completed(future_to_key):
|
269 |
-
key = future_to_key[future]
|
270 |
-
try:
|
271 |
-
response = future.result()
|
272 |
-
history[key] = response
|
273 |
-
except Exception as e:
|
274 |
-
print(f"Error processing {key}: {e}")
|
275 |
-
|
276 |
-
print("Creating Vectors")
|
277 |
-
genai_embeddings=[]
|
278 |
-
|
279 |
-
for tag in history:
|
280 |
-
result = genai.embed_content(
|
281 |
-
model="models/embedding-001",
|
282 |
-
content=history[tag],
|
283 |
-
task_type="retrieval_document")
|
284 |
-
genai_embeddings.append(result['embedding'])
|
285 |
-
|
286 |
-
|
287 |
-
return history,genai_embeddings
|
288 |
-
|
289 |
-
def get_embed_chroma(link):
|
290 |
-
|
291 |
-
print(f"\n--> Creating Embeddings - {link}")
|
292 |
-
|
293 |
-
# Extract Text -----------------------------
|
294 |
-
if link[-3:] == '.md' or link[8:11] == 'en.':
|
295 |
-
text = web_extractor(link)
|
296 |
-
else:
|
297 |
-
text = pdf_extractor(link)
|
298 |
-
print("\u2713 Extracting Text")
|
299 |
-
|
300 |
-
# Create Chunks ----------------------------
|
301 |
-
|
302 |
-
text = re.sub(r'\.{2,}', '.', text)
|
303 |
-
text = re.sub(r'\s{2,}', ' ', text)
|
304 |
-
text = [re.sub(r'\n{2,}', '\n', text)]
|
305 |
-
|
306 |
-
chunks = text_splitter_small.create_documents(text)
|
307 |
-
print("\u2713 Writing Tag Data")
|
308 |
-
|
309 |
-
# Creating Vector
|
310 |
-
embedding_vectors=[]
|
311 |
-
textual_data = []
|
312 |
-
print("\u2713 Creating Vectors")
|
313 |
-
|
314 |
-
|
315 |
-
for text in chunks:
|
316 |
-
|
317 |
-
inputs = tokenizer(text.page_content, return_tensors="pt", padding=True, truncation=True)
|
318 |
-
inputs = {k: v.to('cpu') for k, v in inputs.items()}
|
319 |
-
|
320 |
-
# Get the model's outputs
|
321 |
-
with torch.no_grad():
|
322 |
-
outputs = model(**inputs)
|
323 |
-
|
324 |
-
embeddings = outputs.last_hidden_state.mean(dim=1)
|
325 |
-
embedding_vectors.append(embeddings.squeeze().cpu().numpy().tolist())
|
326 |
-
textual_data.append(text.page_content)
|
327 |
-
|
328 |
-
return textual_data , embedding_vectors
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
def get_image_embeddings(Product):
|
333 |
-
image_embeddings = []
|
334 |
-
|
335 |
-
links = search_images(Product)
|
336 |
-
with concurrent.futures.ThreadPoolExecutor() as executor:
|
337 |
-
descriptions = list(executor.map(feature_extraction_image, links))
|
338 |
-
|
339 |
-
for description in descriptions:
|
340 |
-
result = genai.embed_content(
|
341 |
-
model="models/embedding-001",
|
342 |
-
content=description,
|
343 |
-
task_type="retrieval_document")
|
344 |
-
|
345 |
-
image_embeddings.append(result['embedding'])
|
346 |
-
# print(image_embeddings)
|
347 |
-
return image_embeddings
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
global text_splitter
|
352 |
-
global data
|
353 |
-
global history
|
354 |
-
|
355 |
-
|
356 |
-
text_splitter = RecursiveCharacterTextSplitter(
|
357 |
-
chunk_size = 10000,
|
358 |
-
chunk_overlap = 100,
|
359 |
-
separators = ["",''," "]
|
360 |
-
)
|
361 |
-
|
362 |
-
text_splitter_small = RecursiveCharacterTextSplitter(
|
363 |
-
chunk_size = 2000,
|
364 |
-
chunk_overlap = 100,
|
365 |
-
separators = ["",''," "]
|
366 |
-
)
|
367 |
-
|
368 |
-
if __name__ == '__main__':
|
369 |
-
print(get_embed_chroma('https://www.galaxys24manual.com/wp-content/uploads/pdf/galaxy-s24-manual-SAM-S921-S926-S928-OS14-011824-FINAL-US-English.pdf'))
|
370 |
-
# print(get_image_embeddings(Product='Samsung Galaxy S24'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|