403 resolved
Browse files- embedding.py +254 -255
embedding.py
CHANGED
@@ -1,255 +1,254 @@
|
|
1 |
-
import
|
2 |
-
import
|
3 |
-
import
|
4 |
-
import
|
5 |
-
import
|
6 |
-
|
7 |
-
from
|
8 |
-
from langchain_community.document_loaders import
|
9 |
-
from
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
"
|
110 |
-
"
|
111 |
-
|
112 |
-
|
113 |
-
"
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
"
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
"
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
"
|
129 |
-
|
130 |
-
|
131 |
-
"
|
132 |
-
|
133 |
-
|
134 |
-
"
|
135 |
-
|
136 |
-
|
137 |
-
"
|
138 |
-
|
139 |
-
|
140 |
-
"
|
141 |
-
|
142 |
-
|
143 |
-
"
|
144 |
-
|
145 |
-
|
146 |
-
"
|
147 |
-
|
148 |
-
|
149 |
-
"
|
150 |
-
|
151 |
-
|
152 |
-
"
|
153 |
-
|
154 |
-
|
155 |
-
"
|
156 |
-
|
157 |
-
|
158 |
-
"
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
"
|
164 |
-
|
165 |
-
|
166 |
-
"
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
"
|
188 |
-
"
|
189 |
-
"
|
190 |
-
"
|
191 |
-
"
|
192 |
-
"
|
193 |
-
"
|
194 |
-
"
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
key
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
global
|
243 |
-
global
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
pass
|
|
|
1 |
+
from PyPDF2 import PdfReader
|
2 |
+
import requests
|
3 |
+
import json
|
4 |
+
import os
|
5 |
+
import concurrent.futures
|
6 |
+
import random
|
7 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
8 |
+
from langchain_community.document_loaders import WebBaseLoader
|
9 |
+
from langchain_community.document_loaders import PyPDFLoader
|
10 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
11 |
+
import google.generativeai as genai
|
12 |
+
from io import BytesIO
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
gemini = ChatGoogleGenerativeAI(model="gemini-1.0-pro-001",google_api_key='AIzaSyBmZtXjJgp7yIAo9joNCZGSxK9PbGMcVaA',temperature = 0.1)
|
17 |
+
gemini1 = ChatGoogleGenerativeAI(model="gemini-1.0-pro-001",google_api_key='AIzaSyABsaDjPujPCBlz4LLxcXDX_bDA9uEL7Xc',temperature = 0.1)
|
18 |
+
gemini2 = ChatGoogleGenerativeAI(model="gemini-1.0-pro-001",google_api_key='AIzaSyBCIQgt1uK7-sJH5Afg5vUZ99EWkx5gSU0',temperature = 0.1)
|
19 |
+
gemini3 = ChatGoogleGenerativeAI(model="gemini-1.0-pro-001",google_api_key='AIzaSyBot9W5Q-BKQ66NAYRUmVeloXWEbXOXTmM',temperature = 0.1)
|
20 |
+
|
21 |
+
genai.configure(api_key="AIzaSyBmZtXjJgp7yIAo9joNCZGSxK9PbGMcVaA")
|
22 |
+
|
23 |
+
|
24 |
+
def pdf_extractor(link):
|
25 |
+
text = ''
|
26 |
+
|
27 |
+
try:
|
28 |
+
# Fetch the PDF file from the URL
|
29 |
+
response = requests.get(link)
|
30 |
+
response.raise_for_status() # Raise an error for bad status codes
|
31 |
+
|
32 |
+
# Use BytesIO to handle the PDF content in memory
|
33 |
+
pdf_file = BytesIO(response.content)
|
34 |
+
|
35 |
+
# Load the PDF file
|
36 |
+
reader = PdfReader(pdf_file)
|
37 |
+
for page in reader.pages:
|
38 |
+
text += page.extract_text() # Extract text from each page
|
39 |
+
|
40 |
+
except requests.exceptions.HTTPError as e:
|
41 |
+
print(f'HTTP error occurred: {e}')
|
42 |
+
except Exception as e:
|
43 |
+
print(f'An error occurred: {e}')
|
44 |
+
|
45 |
+
return [text]
|
46 |
+
|
47 |
+
def web_extractor(link):
|
48 |
+
text = ''
|
49 |
+
|
50 |
+
try:
|
51 |
+
loader = WebBaseLoader(link)
|
52 |
+
pages = loader.load_and_split()
|
53 |
+
|
54 |
+
for page in pages:
|
55 |
+
text+=page.page_content
|
56 |
+
except:
|
57 |
+
pass
|
58 |
+
|
59 |
+
return [text]
|
60 |
+
|
61 |
+
|
62 |
+
def feature_extraction(tag, history , context):
|
63 |
+
|
64 |
+
prompt = f'''
|
65 |
+
You are an intelligent assistant tasked with updating product information. You have two data sources:
|
66 |
+
1. Tag_History: Previously gathered information about the product.
|
67 |
+
2. Tag_Context: New data that might contain additional details.
|
68 |
+
Your job is to read the Tag_Context and update the relevant field in the Tag_History with any new details found. The field to be updated is the {tag} FIELD.
|
69 |
+
Guidelines:
|
70 |
+
- Only add new details that are relevant to the {tag} FIELD.
|
71 |
+
- Do not add or modify any other fields in the Tag_History.
|
72 |
+
- Ensure your response is in coherent sentences, integrating the new details seamlessly into the existing information.
|
73 |
+
Here is the data:
|
74 |
+
Tag_Context: {str(context)}
|
75 |
+
Tag_History: {history}
|
76 |
+
Respond with the updated Tag_History.
|
77 |
+
'''
|
78 |
+
|
79 |
+
model = random.choice([gemini,gemini1,gemini2,gemini3])
|
80 |
+
result = model.invoke(prompt)
|
81 |
+
|
82 |
+
return result.content
|
83 |
+
|
84 |
+
def detailed_feature_extraction(find, context):
|
85 |
+
|
86 |
+
prompt = f'''
|
87 |
+
You are an intelligent assistant tasked with finding product information. You have one data source and one output format:
|
88 |
+
1. Context: The gathered information about the product.
|
89 |
+
2. Format: Details which need to be filled based on Context.
|
90 |
+
Your job is to read the Context and update the relevant field in Format using Context.
|
91 |
+
Guidelines:
|
92 |
+
- Only add details that are relevant to the individual FIELD.
|
93 |
+
- Do not add or modify any other fields in the Format.
|
94 |
+
- If nothing found return None.
|
95 |
+
Here is the data:
|
96 |
+
The Context is {str(context)}
|
97 |
+
The Format is {str(find)}
|
98 |
+
'''
|
99 |
+
|
100 |
+
model = random.choice([gemini,gemini1,gemini2,gemini3])
|
101 |
+
result = model.invoke(prompt)
|
102 |
+
|
103 |
+
return result.content
|
104 |
+
|
105 |
+
def detailed_history(history):
|
106 |
+
|
107 |
+
details = {
|
108 |
+
"Introduction": {
|
109 |
+
"Product Name": None,
|
110 |
+
"Overview of the product": None,
|
111 |
+
"Purpose of the manual": None,
|
112 |
+
"Audience": None,
|
113 |
+
"Additional Details": None
|
114 |
+
},
|
115 |
+
"Specifications": {
|
116 |
+
"Technical specifications": None,
|
117 |
+
"Performance metrics": None,
|
118 |
+
"Additional Details": None
|
119 |
+
},
|
120 |
+
"Product Overview": {
|
121 |
+
"Product features": None,
|
122 |
+
"Key components and parts": None,
|
123 |
+
"Additional Details": None
|
124 |
+
},
|
125 |
+
"Safety Information": {
|
126 |
+
"Safety warnings and precautions": None,
|
127 |
+
"Compliance and certification information": None,
|
128 |
+
"Additional Details": None
|
129 |
+
},
|
130 |
+
"Installation Instructions": {
|
131 |
+
"Unboxing and inventory checklist": None,
|
132 |
+
"Step-by-step installation guide": None,
|
133 |
+
"Required tools and materials": None,
|
134 |
+
"Additional Details": None
|
135 |
+
},
|
136 |
+
"Setup and Configuration": {
|
137 |
+
"Initial setup procedures": None,
|
138 |
+
"Configuration settings": None,
|
139 |
+
"Troubleshooting setup issues": None,
|
140 |
+
"Additional Details": None
|
141 |
+
},
|
142 |
+
"Operation Instructions": {
|
143 |
+
"How to use the product": None,
|
144 |
+
"Detailed instructions for different functionalities": None,
|
145 |
+
"User interface guide": None,
|
146 |
+
"Additional Details": None
|
147 |
+
},
|
148 |
+
"Maintenance and Care": {
|
149 |
+
"Cleaning instructions": None,
|
150 |
+
"Maintenance schedule": None,
|
151 |
+
"Replacement parts and accessories": None,
|
152 |
+
"Additional Details": None
|
153 |
+
},
|
154 |
+
"Troubleshooting": {
|
155 |
+
"Common issues and solutions": None,
|
156 |
+
"Error messages and their meanings": None,
|
157 |
+
"Support Information": None,
|
158 |
+
"Additional Details": None
|
159 |
+
},
|
160 |
+
"Warranty Information": {
|
161 |
+
"Terms and Conditions": None,
|
162 |
+
"Service and repair information": None,
|
163 |
+
"Additional Details": None
|
164 |
+
},
|
165 |
+
"Legal Information": {
|
166 |
+
"Copyright information": None,
|
167 |
+
"Trademarks and patents": None,
|
168 |
+
"Disclaimers": None,
|
169 |
+
"Additional Details": None
|
170 |
+
|
171 |
+
}
|
172 |
+
}
|
173 |
+
|
174 |
+
for key,val in history.items():
|
175 |
+
|
176 |
+
find = details[key]
|
177 |
+
|
178 |
+
details[key] = str(detailed_feature_extraction(find,val))
|
179 |
+
|
180 |
+
return details
|
181 |
+
|
182 |
+
|
183 |
+
def get_embeddings(link):
|
184 |
+
|
185 |
+
print(f"\nCreating Embeddings ----- {link}")
|
186 |
+
history = {
|
187 |
+
"Introduction": "",
|
188 |
+
"Specifications": "",
|
189 |
+
"Product Overview": "",
|
190 |
+
"Safety Information": "",
|
191 |
+
"Installation Instructions": "",
|
192 |
+
"Setup and Configuration": "",
|
193 |
+
"Operation Instructions": "",
|
194 |
+
"Maintenance and Care": "",
|
195 |
+
"Troubleshooting": "",
|
196 |
+
"Warranty Information": "",
|
197 |
+
"Legal Information": ""
|
198 |
+
}
|
199 |
+
|
200 |
+
# Extract Text -----------------------------
|
201 |
+
print("Extracting Text")
|
202 |
+
if link[-3:] == '.md' or link[8:11] == 'en.':
|
203 |
+
text = web_extractor(link)
|
204 |
+
else:
|
205 |
+
text = pdf_extractor(link)
|
206 |
+
|
207 |
+
# Create Chunks ----------------------------
|
208 |
+
print("Writing Tag Data")
|
209 |
+
chunks = text_splitter.create_documents(text)
|
210 |
+
|
211 |
+
for chunk in chunks:
|
212 |
+
|
213 |
+
with concurrent.futures.ThreadPoolExecutor() as executor:
|
214 |
+
future_to_key = {
|
215 |
+
executor.submit(
|
216 |
+
feature_extraction, f"Product {key}", history[key], chunk.page_content
|
217 |
+
): key for key in history
|
218 |
+
}
|
219 |
+
for future in concurrent.futures.as_completed(future_to_key):
|
220 |
+
key = future_to_key[future]
|
221 |
+
try:
|
222 |
+
response = future.result()
|
223 |
+
history[key] = response
|
224 |
+
except Exception as e:
|
225 |
+
print(f"Error processing {key}: {e}")
|
226 |
+
|
227 |
+
# history = detailed_history(history)
|
228 |
+
print("Creating Vectors")
|
229 |
+
genai_embeddings=[]
|
230 |
+
|
231 |
+
for tag in history:
|
232 |
+
result = genai.embed_content(
|
233 |
+
model="models/embedding-001",
|
234 |
+
content=history[tag],
|
235 |
+
task_type="retrieval_document")
|
236 |
+
genai_embeddings.append(result['embedding'])
|
237 |
+
|
238 |
+
|
239 |
+
return history,genai_embeddings
|
240 |
+
|
241 |
+
global text_splitter
|
242 |
+
global data
|
243 |
+
global history
|
244 |
+
|
245 |
+
|
246 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
247 |
+
chunk_size = 10000,
|
248 |
+
chunk_overlap = 100,
|
249 |
+
separators = ["",''," "]
|
250 |
+
)
|
251 |
+
|
252 |
+
|
253 |
+
if __name__ == '__main__':
|
254 |
+
pass
|
|