ThanuMahee commited on
Commit
50db2c9
·
verified ·
1 Parent(s): 5791d8e

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +24 -0
app.py ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import numpy as np
3
+ import tensorflow as tf
4
+
5
+ # Load the TFLite model
6
+ interpreter = tf.lite.Interpreter(model_path='efficent_net50.tflite')
7
+ interpreter.allocate_tensors()
8
+
9
+ input_details = interpreter.get_input_details()
10
+ output_details = interpreter.get_output_details()
11
+
12
+ def predict(image):
13
+ # Preprocess the input image to match model input shape
14
+ image = np.array(image, dtype=np.float32) # Convert to float32
15
+ image = np.resize(image, (1, 224, 224, 3)) # Resize to [1, 224, 224, 3]
16
+
17
+ interpreter.set_tensor(input_details[0]['index'], image)
18
+ interpreter.invoke()
19
+
20
+ output_data = interpreter.get_tensor(output_details[0]['index'])
21
+ return output_data.tolist() # Return the prediction as a list
22
+
23
+ iface = gr.Interface(fn=predict, inputs="image", outputs="label", title="TFLite Model Inference")
24
+ iface.launch()