Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import tensorflow as tf
|
4 |
+
|
5 |
+
# Load the TFLite model
|
6 |
+
interpreter = tf.lite.Interpreter(model_path='efficent_net50.tflite')
|
7 |
+
interpreter.allocate_tensors()
|
8 |
+
|
9 |
+
input_details = interpreter.get_input_details()
|
10 |
+
output_details = interpreter.get_output_details()
|
11 |
+
|
12 |
+
def predict(image):
|
13 |
+
# Preprocess the input image to match model input shape
|
14 |
+
image = np.array(image, dtype=np.float32) # Convert to float32
|
15 |
+
image = np.resize(image, (1, 224, 224, 3)) # Resize to [1, 224, 224, 3]
|
16 |
+
|
17 |
+
interpreter.set_tensor(input_details[0]['index'], image)
|
18 |
+
interpreter.invoke()
|
19 |
+
|
20 |
+
output_data = interpreter.get_tensor(output_details[0]['index'])
|
21 |
+
return output_data.tolist() # Return the prediction as a list
|
22 |
+
|
23 |
+
iface = gr.Interface(fn=predict, inputs="image", outputs="label", title="TFLite Model Inference")
|
24 |
+
iface.launch()
|