File size: 1,591 Bytes
65d7807 9f4ba8d 8af7545 b60c78b 36aa3f5 65d7807 b60c78b 65d7807 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
import gradio as gr
from huggingface_hub import from_pretrained_keras
from huggingface_hub import KerasModelHubMixin
import transformers
from transformers import AutoTokenizer
m = from_pretrained_keras('sgonzalezsilot/FakeNews-Detection-Twitter-Thesis')
# model = from_pretrained_keras("keras-io/cct")
def bert_encode(tokenizer,data,maximum_length) :
input_ids = []
attention_masks = []
for i in range(len(data)):
encoded = tokenizer.encode_plus(
data[i],
add_special_tokens=True,
max_length=maximum_length,
pad_to_max_length=True,
truncation = True,
return_attention_mask=True,
)
input_ids.append(encoded['input_ids'])
attention_masks.append(encoded['attention_mask'])
return np.array(input_ids),np.array(attention_masks)
train_encodings = tokenizer(train_texts, truncation=True, padding=True)
test_encodings = tokenizer(test_texts, truncation=True, padding=True)
MODEL = "digitalepidemiologylab/covid-twitter-bert-v2"
tokenizer = AutoTokenizer.from_pretrained(MODEL)
sentence_length = 110
train_input_ids,train_attention_masks = bert_encode(tokenizer,train_texts,sentence_length)
test_input_ids,test_attention_masks = bert_encode(tokenizer,test_texts,sentence_length)
def get_news(input_text):
return sentiment(input_text)
iface = gr.Interface(fn = get_news,
inputs = "text",
outputs = ['text'],
title = 'Fake News',
description="")
iface.launch(inline = False) |