Spaces:
Runtime error
Runtime error
import gradio as gr | |
from huggingface_hub import from_pretrained_keras | |
from huggingface_hub import KerasModelHubMixin | |
import transformers | |
from transformers import AutoTokenizer | |
import numpy as np | |
m = from_pretrained_keras('sgonzalezsilot/FakeNews-Detection-Twitter-Thesis') | |
# model = from_pretrained_keras("keras-io/cct") | |
MODEL = "digitalepidemiologylab/covid-twitter-bert-v2" | |
tokenizer = AutoTokenizer.from_pretrained(MODEL) | |
def bert_encode(tokenizer,data,maximum_length) : | |
input_ids = [] | |
attention_masks = [] | |
for i in range(len(data)): | |
encoded = tokenizer.encode_plus( | |
data[i], | |
add_special_tokens=True, | |
max_length=maximum_length, | |
pad_to_max_length=True, | |
truncation = True, | |
return_attention_mask=True, | |
) | |
input_ids.append(encoded['input_ids']) | |
attention_masks.append(encoded['attention_mask']) | |
return np.array(input_ids),np.array(attention_masks) | |
# train_encodings = tokenizer(train_texts, truncation=True, padding=True) | |
# test_encodings = tokenizer(test_texts, truncation=True, padding=True) | |
def get_news(input_text): | |
sentence_length = 110 | |
train_input_ids,train_attention_masks = bert_encode(tokenizer,[input_text],sentence_length) | |
pred = m.predict([train_input_ids,train_attention_masks]) | |
pred = np.round(pred) | |
pred = pred.flatten() | |
if pred == 1: | |
result = "Fake News" | |
else: | |
result = "True News" | |
return result | |
tweet_input = gr.Textbox(label = "Enter the tweet") | |
output = gr.Textbox(label="Result") | |
iface = gr.Interface(fn = get_news, | |
inputs = tweet_input, | |
outputs = output, | |
title = 'Fake News', | |
description="") | |
iface.launch(inline = False) |