import torch import torch.nn as nn import torchvision def create_model(num_classes, seed = 42): weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT auto_transforms = weights.transforms() model = torchvision.models.efficientnet_b2(weights = weights) for param in model.parameters(): param.requires_grad = False model.classifier = nn.Sequential( nn.Dropout(p = 0.3, inplace = True), nn.Linear(in_features = 1408, out_features = num_classes, bias = True) ) optimizer = torch.optim.Adam(params = model.parameters(), lr = 0.001) lossFunc = nn.CrossEntropyLoss() return model, auto_transforms, optimizer, lossFunc