Spaces:
Sleeping
Sleeping
Update document_chunker.py
Browse files- document_chunker.py +232 -50
document_chunker.py
CHANGED
@@ -3,12 +3,10 @@ from typing import List, Dict, Optional
|
|
3 |
from pathlib import Path
|
4 |
from collections import defaultdict
|
5 |
from dataclasses import dataclass
|
6 |
-
|
7 |
from docx import Document
|
8 |
from sentence_transformers import SentenceTransformer
|
9 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
10 |
-
import fitz # PyMuPDF
|
11 |
-
|
12 |
|
13 |
@dataclass
|
14 |
class DocumentChunk:
|
@@ -17,7 +15,6 @@ class DocumentChunk:
|
|
17 |
embedding: List[float]
|
18 |
metadata: Dict
|
19 |
|
20 |
-
|
21 |
class DocumentChunker:
|
22 |
def __init__(self):
|
23 |
self.embed_model = SentenceTransformer("all-MiniLM-L6-v2")
|
@@ -42,21 +39,25 @@ class DocumentChunker:
|
|
42 |
|
43 |
self.patterns = {
|
44 |
'grant_application': {
|
45 |
-
'header_patterns': [
|
46 |
-
|
47 |
-
r'^([A-Z][^a-z]*[A-Z])$',
|
48 |
-
r'^([A-Z][A-Za-z\s]+)$',
|
49 |
-
],
|
50 |
-
'question_patterns': [
|
51 |
-
r'^.+\?$',
|
52 |
-
r'^\*?Please .+',
|
53 |
-
r'^How .+',
|
54 |
-
r'^What .+',
|
55 |
-
r'^Describe .+',
|
56 |
-
]
|
57 |
}
|
58 |
}
|
59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
def extract_text(self, file_path: str) -> str:
|
61 |
if file_path.endswith(".docx"):
|
62 |
doc = Document(file_path)
|
@@ -65,12 +66,10 @@ class DocumentChunker:
|
|
65 |
text = ""
|
66 |
with fitz.open(file_path) as doc:
|
67 |
for page in doc:
|
68 |
-
text += page.get_text()
|
69 |
return text
|
70 |
-
elif file_path.endswith(".txt"):
|
71 |
-
return Path(file_path).read_text()
|
72 |
else:
|
73 |
-
|
74 |
|
75 |
def detect_document_type(self, text: str) -> str:
|
76 |
keywords = ['grant', 'funding', 'mission']
|
@@ -88,23 +87,27 @@ class DocumentChunker:
|
|
88 |
headers.append({'text': line, 'line_number': i, 'pattern_type': 'header'})
|
89 |
return headers
|
90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
def chunk_by_headers(self, text: str, headers: List[Dict], max_words=150) -> List[Dict]:
|
92 |
lines = text.split('\n')
|
93 |
chunks = []
|
94 |
|
95 |
-
if not headers:
|
96 |
-
words = text.split()
|
97 |
-
for i in range(0, len(words), max_words):
|
98 |
-
piece = ' '.join(words[i:i + max_words])
|
99 |
-
chunks.append({
|
100 |
-
'chunk_id': len(chunks) + 1,
|
101 |
-
'header': '',
|
102 |
-
'questions': [],
|
103 |
-
'content': piece,
|
104 |
-
'pattern_type': 'auto'
|
105 |
-
})
|
106 |
-
return chunks
|
107 |
-
|
108 |
for i, header in enumerate(headers):
|
109 |
start, end = header['line_number'], headers[i + 1]['line_number'] if i + 1 < len(headers) else len(lines)
|
110 |
content_lines = lines[start + 1:end]
|
@@ -113,6 +116,8 @@ class DocumentChunker:
|
|
113 |
|
114 |
for j in range(0, len(content.split()), max_words):
|
115 |
chunk_text = ' '.join(content.split()[j:j + max_words])
|
|
|
|
|
116 |
chunks.append({
|
117 |
'chunk_id': len(chunks) + 1,
|
118 |
'header': header['text'] if header['pattern_type'] == 'header' else '',
|
@@ -121,24 +126,11 @@ class DocumentChunker:
|
|
121 |
'pattern_type': header['pattern_type'],
|
122 |
'split_index': j // max_words
|
123 |
})
|
124 |
-
return chunks
|
125 |
-
|
126 |
-
def match_category(self, text: str, return_first: bool = True) -> Optional[str] or List[str]:
|
127 |
-
lower_text = text.lower()
|
128 |
-
match_scores = defaultdict(int)
|
129 |
-
for category, patterns in self.category_patterns.items():
|
130 |
-
for pattern in patterns:
|
131 |
-
matches = re.findall(pattern, lower_text)
|
132 |
-
match_scores[category] += len(matches)
|
133 |
|
134 |
-
|
135 |
-
return None if return_first else []
|
136 |
-
|
137 |
-
sorted_categories = sorted(match_scores.items(), key=lambda x: -x[1])
|
138 |
-
return sorted_categories[0][0] if return_first else [cat for cat, _ in sorted_categories if match_scores[cat] > 0]
|
139 |
|
140 |
def extract_topics_tfidf(self, text: str, max_features: int = 3) -> List[str]:
|
141 |
-
clean = re.sub(r'[
|
142 |
vectorizer = TfidfVectorizer(max_features=max_features * 2, stop_words='english')
|
143 |
tfidf = vectorizer.fit_transform([clean])
|
144 |
terms = vectorizer.get_feature_names_out()
|
@@ -158,10 +150,12 @@ class DocumentChunker:
|
|
158 |
text = self.extract_text(str(file_path))
|
159 |
doc_type = self.detect_document_type(text)
|
160 |
headers = self.extract_headers(text, doc_type)
|
161 |
-
|
|
|
|
|
162 |
|
163 |
final_chunks = []
|
164 |
-
for chunk in
|
165 |
full_text = f"{chunk['header']} {' '.join(chunk['questions'])} {chunk['content']}".strip()
|
166 |
category = self.match_category(full_text, return_first=True)
|
167 |
categories = self.match_category(full_text, return_first=False)
|
@@ -179,8 +173,196 @@ class DocumentChunker:
|
|
179 |
"category": category,
|
180 |
"categories": categories,
|
181 |
"topics": topics,
|
|
|
182 |
"confidence_score": confidence
|
183 |
}
|
184 |
})
|
185 |
|
186 |
return final_chunks
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
from pathlib import Path
|
4 |
from collections import defaultdict
|
5 |
from dataclasses import dataclass
|
6 |
+
import fitz # PyMuPDF
|
7 |
from docx import Document
|
8 |
from sentence_transformers import SentenceTransformer
|
9 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
|
|
|
|
10 |
|
11 |
@dataclass
|
12 |
class DocumentChunk:
|
|
|
15 |
embedding: List[float]
|
16 |
metadata: Dict
|
17 |
|
|
|
18 |
class DocumentChunker:
|
19 |
def __init__(self):
|
20 |
self.embed_model = SentenceTransformer("all-MiniLM-L6-v2")
|
|
|
39 |
|
40 |
self.patterns = {
|
41 |
'grant_application': {
|
42 |
+
'header_patterns': [r'\*\*([^*]+)\*\*', r'^([A-Z][^a-z]*[A-Z])$', r'^([A-Z][A-Za-z\s]+)$'],
|
43 |
+
'question_patterns': [r'^.+\?$', r'^\*?Please .+', r'^How .+', r'^What .+', r'^Describe .+']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
}
|
45 |
}
|
46 |
|
47 |
+
def match_category(self, text: str, return_first: bool = True) -> Optional[str] or List[str]:
|
48 |
+
lower_text = text.lower()
|
49 |
+
match_scores = defaultdict(int)
|
50 |
+
for category, patterns in self.category_patterns.items():
|
51 |
+
for pattern in patterns:
|
52 |
+
matches = re.findall(pattern, lower_text)
|
53 |
+
match_scores[category] += len(matches)
|
54 |
+
|
55 |
+
if not match_scores:
|
56 |
+
return None if return_first else []
|
57 |
+
|
58 |
+
sorted_categories = sorted(match_scores.items(), key=lambda x: -x[1])
|
59 |
+
return sorted_categories[0][0] if return_first else [cat for cat, _ in sorted_categories if match_scores[cat] > 0]
|
60 |
+
|
61 |
def extract_text(self, file_path: str) -> str:
|
62 |
if file_path.endswith(".docx"):
|
63 |
doc = Document(file_path)
|
|
|
66 |
text = ""
|
67 |
with fitz.open(file_path) as doc:
|
68 |
for page in doc:
|
69 |
+
text += page.get_text("text") # More accurate reading order
|
70 |
return text
|
|
|
|
|
71 |
else:
|
72 |
+
return Path(file_path).read_text()
|
73 |
|
74 |
def detect_document_type(self, text: str) -> str:
|
75 |
keywords = ['grant', 'funding', 'mission']
|
|
|
87 |
headers.append({'text': line, 'line_number': i, 'pattern_type': 'header'})
|
88 |
return headers
|
89 |
|
90 |
+
def fallback_chunking(self, text: str, max_words=150, stride=100) -> List[Dict]:
|
91 |
+
words = text.split()
|
92 |
+
chunks = []
|
93 |
+
for i in range(0, len(words), stride):
|
94 |
+
chunk_text = ' '.join(words[i:i + max_words])
|
95 |
+
if len(chunk_text.split()) < 20:
|
96 |
+
continue
|
97 |
+
chunks.append({
|
98 |
+
'chunk_id': len(chunks) + 1,
|
99 |
+
'header': '',
|
100 |
+
'questions': [],
|
101 |
+
'content': chunk_text,
|
102 |
+
'pattern_type': 'fallback',
|
103 |
+
'split_index': i // stride
|
104 |
+
})
|
105 |
+
return chunks
|
106 |
+
|
107 |
def chunk_by_headers(self, text: str, headers: List[Dict], max_words=150) -> List[Dict]:
|
108 |
lines = text.split('\n')
|
109 |
chunks = []
|
110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
for i, header in enumerate(headers):
|
112 |
start, end = header['line_number'], headers[i + 1]['line_number'] if i + 1 < len(headers) else len(lines)
|
113 |
content_lines = lines[start + 1:end]
|
|
|
116 |
|
117 |
for j in range(0, len(content.split()), max_words):
|
118 |
chunk_text = ' '.join(content.split()[j:j + max_words])
|
119 |
+
if len(chunk_text.split()) < 20:
|
120 |
+
continue
|
121 |
chunks.append({
|
122 |
'chunk_id': len(chunks) + 1,
|
123 |
'header': header['text'] if header['pattern_type'] == 'header' else '',
|
|
|
126 |
'pattern_type': header['pattern_type'],
|
127 |
'split_index': j // max_words
|
128 |
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
|
130 |
+
return chunks
|
|
|
|
|
|
|
|
|
131 |
|
132 |
def extract_topics_tfidf(self, text: str, max_features: int = 3) -> List[str]:
|
133 |
+
clean = re.sub(r'[^a-z0-9\s]', ' ', text.lower())
|
134 |
vectorizer = TfidfVectorizer(max_features=max_features * 2, stop_words='english')
|
135 |
tfidf = vectorizer.fit_transform([clean])
|
136 |
terms = vectorizer.get_feature_names_out()
|
|
|
150 |
text = self.extract_text(str(file_path))
|
151 |
doc_type = self.detect_document_type(text)
|
152 |
headers = self.extract_headers(text, doc_type)
|
153 |
+
chunks = self.chunk_by_headers(text, headers)
|
154 |
+
if not chunks:
|
155 |
+
chunks = self.fallback_chunking(text)
|
156 |
|
157 |
final_chunks = []
|
158 |
+
for chunk in chunks:
|
159 |
full_text = f"{chunk['header']} {' '.join(chunk['questions'])} {chunk['content']}".strip()
|
160 |
category = self.match_category(full_text, return_first=True)
|
161 |
categories = self.match_category(full_text, return_first=False)
|
|
|
173 |
"category": category,
|
174 |
"categories": categories,
|
175 |
"topics": topics,
|
176 |
+
"chunking_strategy": chunk['pattern_type'],
|
177 |
"confidence_score": confidence
|
178 |
}
|
179 |
})
|
180 |
|
181 |
return final_chunks
|
182 |
+
|
183 |
+
# import re
|
184 |
+
# from typing import List, Dict, Optional
|
185 |
+
# from pathlib import Path
|
186 |
+
# from collections import defaultdict
|
187 |
+
# from dataclasses import dataclass
|
188 |
+
|
189 |
+
# from docx import Document
|
190 |
+
# from sentence_transformers import SentenceTransformer
|
191 |
+
# from sklearn.feature_extraction.text import TfidfVectorizer
|
192 |
+
# import fitz # PyMuPDF
|
193 |
+
|
194 |
+
|
195 |
+
# @dataclass
|
196 |
+
# class DocumentChunk:
|
197 |
+
# chunk_id: int
|
198 |
+
# text: str
|
199 |
+
# embedding: List[float]
|
200 |
+
# metadata: Dict
|
201 |
+
|
202 |
+
|
203 |
+
# class DocumentChunker:
|
204 |
+
# def __init__(self):
|
205 |
+
# self.embed_model = SentenceTransformer("all-MiniLM-L6-v2")
|
206 |
+
|
207 |
+
# self.category_patterns = {
|
208 |
+
# "Project Summary": [r"\bsummary\b", r"\bproject overview\b"],
|
209 |
+
# "Contact Information": [r"\bcontact\b", r"\bemail\b", r"\bphone\b", r"\baddress\b"],
|
210 |
+
# "Problem/ Need": [r"\bproblem\b", r"\bneed\b", r"\bchallenge\b"],
|
211 |
+
# "Mission Statement": [r"\bmission\b", r"\bvision\b"],
|
212 |
+
# "Fit or Alignment to Grant": [r"\balignment\b", r"\bfit\b", r"\bgrant (focus|priority)\b"],
|
213 |
+
# "Goals/ Vision / Objectives": [r"\bgoals?\b", r"\bobjectives?\b", r"\bvision\b"],
|
214 |
+
# "Our Solution *PROGRAMS* and Approach": [r"\bsolution\b", r"\bprogram\b", r"\bapproach\b"],
|
215 |
+
# "Impact, Results, or Outcomes": [r"\bimpact\b", r"\bresults?\b", r"\boutcomes?\b"],
|
216 |
+
# "Beneficiaries": [r"\bbeneficiaries\b", r"\bwho we serve\b", r"\btarget audience\b"],
|
217 |
+
# "Differentiation with Competitors": [r"\bcompetitor\b", r"\bdifferent\b", r"\bvalue proposition\b"],
|
218 |
+
# "Plan and Timeline": [r"\btimeline\b", r"\bschedule\b", r"\bmilestone\b"],
|
219 |
+
# "Budget and Funding": [r"\bbudget\b", r"\bfunding\b", r"\bcost\b"],
|
220 |
+
# "Sustainability and Strategy": [r"\bsustainability\b", r"\bexit strategy\b"],
|
221 |
+
# "Organization's History": [r"\bhistory\b", r"\borganization background\b"],
|
222 |
+
# "Team Member Descriptions": [r"\bteam\b", r"\bstaff\b", r"\blived experience\b"],
|
223 |
+
# }
|
224 |
+
|
225 |
+
# self.patterns = {
|
226 |
+
# 'grant_application': {
|
227 |
+
# 'header_patterns': [
|
228 |
+
# r'\*\*([^*]+)\*\*',
|
229 |
+
# r'^([A-Z][^a-z]*[A-Z])$',
|
230 |
+
# r'^([A-Z][A-Za-z\s]+)$',
|
231 |
+
# ],
|
232 |
+
# 'question_patterns': [
|
233 |
+
# r'^.+\?$',
|
234 |
+
# r'^\*?Please .+',
|
235 |
+
# r'^How .+',
|
236 |
+
# r'^What .+',
|
237 |
+
# r'^Describe .+',
|
238 |
+
# ]
|
239 |
+
# }
|
240 |
+
# }
|
241 |
+
|
242 |
+
# def extract_text(self, file_path: str) -> str:
|
243 |
+
# if file_path.endswith(".docx"):
|
244 |
+
# doc = Document(file_path)
|
245 |
+
# return '\n'.join([f"**{p.text}**" if any(r.bold for r in p.runs) else p.text for p in doc.paragraphs])
|
246 |
+
# elif file_path.endswith(".pdf"):
|
247 |
+
# text = ""
|
248 |
+
# with fitz.open(file_path) as doc:
|
249 |
+
# for page in doc:
|
250 |
+
# text += page.get_text()
|
251 |
+
# return text
|
252 |
+
# elif file_path.endswith(".txt"):
|
253 |
+
# return Path(file_path).read_text()
|
254 |
+
# else:
|
255 |
+
# raise ValueError("Unsupported file format")
|
256 |
+
|
257 |
+
# def detect_document_type(self, text: str) -> str:
|
258 |
+
# keywords = ['grant', 'funding', 'mission']
|
259 |
+
# return 'grant_application' if sum(k in text.lower() for k in keywords) >= 2 else 'generic'
|
260 |
+
|
261 |
+
# def extract_headers(self, text: str, doc_type: str) -> List[Dict]:
|
262 |
+
# lines = text.split('\n')
|
263 |
+
# headers = []
|
264 |
+
# patterns = self.patterns.get(doc_type, self.patterns['grant_application'])
|
265 |
+
# for i, line in enumerate(lines):
|
266 |
+
# line = line.strip("* ")
|
267 |
+
# if any(re.match(p, line, re.IGNORECASE) for p in patterns['question_patterns']):
|
268 |
+
# headers.append({'text': line, 'line_number': i, 'pattern_type': 'question'})
|
269 |
+
# elif any(re.match(p, line) for p in patterns['header_patterns']):
|
270 |
+
# headers.append({'text': line, 'line_number': i, 'pattern_type': 'header'})
|
271 |
+
# return headers
|
272 |
+
|
273 |
+
# def chunk_by_headers(self, text: str, headers: List[Dict], max_words=150) -> List[Dict]:
|
274 |
+
# lines = text.split('\n')
|
275 |
+
# chunks = []
|
276 |
+
|
277 |
+
# if not headers:
|
278 |
+
# words = text.split()
|
279 |
+
# for i in range(0, len(words), max_words):
|
280 |
+
# piece = ' '.join(words[i:i + max_words])
|
281 |
+
# chunks.append({
|
282 |
+
# 'chunk_id': len(chunks) + 1,
|
283 |
+
# 'header': '',
|
284 |
+
# 'questions': [],
|
285 |
+
# 'content': piece,
|
286 |
+
# 'pattern_type': 'auto'
|
287 |
+
# })
|
288 |
+
# return chunks
|
289 |
+
|
290 |
+
# for i, header in enumerate(headers):
|
291 |
+
# start, end = header['line_number'], headers[i + 1]['line_number'] if i + 1 < len(headers) else len(lines)
|
292 |
+
# content_lines = lines[start + 1:end]
|
293 |
+
# questions = [l.strip() for l in content_lines if l.strip().endswith('?') and len(l.split()) <= 20]
|
294 |
+
# content = ' '.join([l.strip() for l in content_lines if l.strip() and l.strip() not in questions])
|
295 |
+
|
296 |
+
# for j in range(0, len(content.split()), max_words):
|
297 |
+
# chunk_text = ' '.join(content.split()[j:j + max_words])
|
298 |
+
# chunks.append({
|
299 |
+
# 'chunk_id': len(chunks) + 1,
|
300 |
+
# 'header': header['text'] if header['pattern_type'] == 'header' else '',
|
301 |
+
# 'questions': questions if header['pattern_type'] == 'question' else [],
|
302 |
+
# 'content': chunk_text,
|
303 |
+
# 'pattern_type': header['pattern_type'],
|
304 |
+
# 'split_index': j // max_words
|
305 |
+
# })
|
306 |
+
# return chunks
|
307 |
+
|
308 |
+
# def match_category(self, text: str, return_first: bool = True) -> Optional[str] or List[str]:
|
309 |
+
# lower_text = text.lower()
|
310 |
+
# match_scores = defaultdict(int)
|
311 |
+
# for category, patterns in self.category_patterns.items():
|
312 |
+
# for pattern in patterns:
|
313 |
+
# matches = re.findall(pattern, lower_text)
|
314 |
+
# match_scores[category] += len(matches)
|
315 |
+
|
316 |
+
# if not match_scores:
|
317 |
+
# return None if return_first else []
|
318 |
+
|
319 |
+
# sorted_categories = sorted(match_scores.items(), key=lambda x: -x[1])
|
320 |
+
# return sorted_categories[0][0] if return_first else [cat for cat, _ in sorted_categories if match_scores[cat] > 0]
|
321 |
+
|
322 |
+
# def extract_topics_tfidf(self, text: str, max_features: int = 3) -> List[str]:
|
323 |
+
# clean = re.sub(r'[^\w\s]', ' ', text.lower())
|
324 |
+
# vectorizer = TfidfVectorizer(max_features=max_features * 2, stop_words='english')
|
325 |
+
# tfidf = vectorizer.fit_transform([clean])
|
326 |
+
# terms = vectorizer.get_feature_names_out()
|
327 |
+
# scores = tfidf.toarray()[0]
|
328 |
+
# top_terms = [term for term, score in sorted(zip(terms, scores), key=lambda x: -x[1]) if score > 0]
|
329 |
+
# return top_terms[:max_features]
|
330 |
+
|
331 |
+
# def calculate_confidence_score(self, chunk: Dict) -> float:
|
332 |
+
# score = 0.0
|
333 |
+
# if chunk.get('header'): score += 0.3
|
334 |
+
# if chunk.get('content') and len(chunk['content'].split()) > 20: score += 0.3
|
335 |
+
# if chunk.get('questions'): score += 0.2
|
336 |
+
# return min(score, 1.0)
|
337 |
+
|
338 |
+
# def process_document(self, file_path: str, title: Optional[str] = None) -> List[Dict]:
|
339 |
+
# file_path = Path(file_path)
|
340 |
+
# text = self.extract_text(str(file_path))
|
341 |
+
# doc_type = self.detect_document_type(text)
|
342 |
+
# headers = self.extract_headers(text, doc_type)
|
343 |
+
# raw_chunks = self.chunk_by_headers(text, headers)
|
344 |
+
|
345 |
+
# final_chunks = []
|
346 |
+
# for chunk in raw_chunks:
|
347 |
+
# full_text = f"{chunk['header']} {' '.join(chunk['questions'])} {chunk['content']}".strip()
|
348 |
+
# category = self.match_category(full_text, return_first=True)
|
349 |
+
# categories = self.match_category(full_text, return_first=False)
|
350 |
+
# embedding = self.embed_model.encode(full_text).tolist()
|
351 |
+
# topics = self.extract_topics_tfidf(full_text)
|
352 |
+
# confidence = self.calculate_confidence_score(chunk)
|
353 |
+
|
354 |
+
# final_chunks.append({
|
355 |
+
# "chunk_id": chunk['chunk_id'],
|
356 |
+
# "text": full_text,
|
357 |
+
# "embedding": embedding,
|
358 |
+
# "metadata": {
|
359 |
+
# **chunk,
|
360 |
+
# "title": title or file_path.name,
|
361 |
+
# "category": category,
|
362 |
+
# "categories": categories,
|
363 |
+
# "topics": topics,
|
364 |
+
# "confidence_score": confidence
|
365 |
+
# }
|
366 |
+
# })
|
367 |
+
|
368 |
+
# return final_chunks
|