Tesneem's picture
Update app.py
61804bb verified
raw
history blame
4.3 kB
import gradio as gr
# def greet(name):
# return "Hello " + name + "!!"
from sentence_transformers import SentenceTransformer
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from datasets import load_dataset
# Load pre-trained SentenceTransformer model
embedding_model = SentenceTransformer("thenlper/gte-large")
# # Example dataset with genres (replace with your actual data)
# dataset = load_dataset("hugginglearners/netflix-shows")
# dataset = dataset.filter(lambda x: x['description'] is not None and x['listed_in'] is not None and x['title'] is not None)
# data = dataset['train'] # Accessing the 'train' split of the dataset
# # Convert the dataset to a list of dictionaries for easier indexing
# data_list = list[data]
# print(data_list)
# # Combine description and genre for embedding
# def combine_description_title_and_genre(description, listed_in, title):
# return f"{description} Genre: {listed_in} Title: {title}"
# # Generate embedding for the query
# def get_embedding(text):
# return embedding_model.encode(text)
# # Vector search function
# def vector_search(query):
# query_embedding = get_embedding(query)
# # Generate embeddings for the combined description and genre
# embeddings = np.array([get_embedding(combine_description_title_and_genre(item["description"], item["listed_in"],item["title"])) for item in data_list[0]])
# # Calculate cosine similarity between the query and all embeddings
# similarities = cosine_similarity([query_embedding], embeddings)
# Load dataset (using the correct dataset identifier for your case)
dataset = load_dataset("hugginglearners/netflix-shows")
# Combine description and genre for embedding
def combine_description_title_and_genre(description, listed_in, title):
return f"{description} Genre: {listed_in} Title: {title}"
# Generate embedding for the query
def get_embedding(text):
return embedding_model.encode(text)
# Vector search function
def vector_search(query):
query_embedding = get_embedding(query)
# Function to generate embeddings for each item in the dataset
def generate_embeddings(example):
return {
'embedding': get_embedding(combine_description_title_and_genre(example["description"], example["listed_in"], example["title"]))
}
# Generate embeddings for the dataset using map
embeddings_dataset = dataset["train"].map(generate_embeddings)
# Extract embeddings
embeddings = np.array([embedding['embedding'] for embedding in embeddings_dataset])
# Calculate cosine similarity between the query and all embeddings
similarities = cosine_similarity([query_embedding], embeddings)
# # Adjust similarity scores based on ratings
# ratings = np.array([item["rating"] for item in data_list])
# adjusted_similarities = similarities * ratings.reshape(-1, 1)
# Get top N most similar items (e.g., top 3)
top_n = 3
top_indices = similarities[0].argsort()[-top_n:][::-1] # Get indices of the top N results
top_items = [dataset["train"][i] for i in top_indices]
# Format the output for display
search_result = ""
for item in top_items:
search_result += f"Title: {item['title']}, Description: {item['description']}, Genre: {item['listed_in']}\n"
return search_result
# Gradio Interface
def movie_search(query):
return vector_search(query)
with gr.Blocks() as demo:
gr.Markdown("# Netflix Recommendation System")
gr.Markdown("Enter a query to receive Netflix show recommendations based on title, description, and genre.")
query = gr.Textbox(label="Enter your query")
output = gr.Textbox(label="Recommendations")
submit_button = gr.Button("Submit")
submit_button.click(fn=movie_search, inputs=query, outputs=output)
demo.launch()
# iface = gr.Interface(fn=movie_search,
# inputs=gr.inputs.Textbox(label="Enter your query"),
# outputs="text",
# live=True,
# title="Netflix Recommendation System",
# description="Enter a query to get Netflix recommendations based on description and genre.")
# iface.launch()
# demo = gr.Interface(fn=greet, inputs="text", outputs="text")
# demo.launch()