File size: 4,961 Bytes
4473ff3
 
fdf85cd
3331cdd
fdf85cd
4473ff3
 
 
 
 
 
 
 
 
98b94f2
fe48904
3ac75f7
 
fe48904
3ac75f7
fe48904
 
 
 
4473ff3
fe48904
3ac75f7
fe48904
4473ff3
fe48904
3ac75f7
 
 
fe48904
 
4473ff3
fe48904
3ac75f7
 
8c30127
 
3ac75f7
fe48904
fdf85cd
fe48904
68e342d
 
3331cdd
fe48904
75adc2b
fe48904
 
8c30127
 
fe48904
 
98b94f2
fe48904
98b94f2
3669869
98b94f2
3669869
3331cdd
98b94f2
 
fe48904
75adc2b
 
98b94f2
 
fe48904
98b94f2
 
 
 
 
 
 
3331cdd
72a6c00
 
1c9ceaf
 
98b94f2
1c9ceaf
fe48904
98b94f2
 
fe48904
98b94f2
 
fe48904
98b94f2
3331cdd
4473ff3
 
8c30127
 
4473ff3
98b94f2
3331cdd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
# Gradio Interface
import gradio as gr
import numpy as np
import pandas as pd
from sklearn.metrics.pairwise import cosine_similarity
from sentence_transformers import SentenceTransformer
import requests
from PIL import Image
from transformers import BlipProcessor, BlipForConditionalGeneration
sentence_model = SentenceTransformer("all-MiniLM-L6-v2")

processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
image_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")

def generate_input(input_type, image=None, text=None, response_amount=3):
    # initalize input variable 
    combined_input = ""

    # handle image input if chosen
    if input_type == "Image" and image:
        inputs = processor(images=image, return_tensors="pt") #process image with BlipProcessor
        out = image_model.generate(**inputs)  #generate caption with BlipModel
        image_caption = processor.decode(out[0], skip_special_tokens=True)  #decode output w/ processor
        combined_input += image_caption  # add the image caption to input

    # handle text input if chosen
    elif input_type == "Text" and text:
        combined_input += text  # add the text to input

    # handle both text and image input if chosen
    elif input_type == "Both" and image and text:
        inputs = processor(images=image, return_tensors="pt")
        out = image_model.generate(**inputs)
        image_caption = processor.decode(out[0], skip_special_tokens=True)  #repeat image processing + caption generation and decoding
        combined_input += image_caption + " and " + text  # combine image caption and text
    
    # if no input, fallback
    if not combined_input:
        combined_input = "No input provided."
    if response_amount is None:
        response_amount=3

    return vector_search(combined_input,response_amount) #search through embedded document w/ input

# load embeddings and metadata
embeddings = np.load("netflix_embeddings.npy")  #created using sentence_transformers on kaggle
metadata = pd.read_csv("netflix_metadata.csv") #created using sentence_transformers on kaggle

# vector search function
def vector_search(query,top_n=3):
    query_embedding = sentence_model.encode(query)  #encode input w/ Sentence Transformers
    similarities = cosine_similarity([query_embedding], embeddings)[0]  #similarity function
    if top_n is None:
        top_n=3
    top_indices = similarities.argsort()[-top_n:][::-1]  #return top n indices based on chosen output amount
    results = metadata.iloc[top_indices]  #get metadata
    result_text=""
    for index,row in results.iterrows():   #loop through results to get Title, Description, and Genre for top n outputs
        if index!=top_n-1:
            result_text+=f"Title: {row['title']}  Description: {row['description']}  Genre: {row['listed_in']}\n\n"
        else:
            result_text+=f"Title: {row['title']}  Description: {row['description']}  Genre: {row['listed_in']}"
    return result_text


def set_response_amount(response_amount):  #set response amount 
    if response_amount is None:
        return 3
    return response_amount

 # based on the selected input type, make the appropriate input visible
def update_inputs(input_type):
    if input_type == "Image":
        return gr.update(visible=True), gr.update(visible=False), gr.update(visible=True)
    elif input_type == "Text":
        return gr.update(visible=False), gr.update(visible=True), gr.update(visible=True)
    elif input_type == "Both":
        return gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
with gr.Blocks() as demo:
    gr.Markdown("# Netflix Recommendation System")
    gr.Markdown("Enter a query to receive Netflix show recommendations based on title, description, and genre.")
   
    input_type = gr.Radio(["Image", "Text", "Both"], label="Select Input Type", type="value")
    response_type=gr.Dropdown(choices=[3,5,10,25], type="value", label="Select Response Amount", visible=False)
    image_input = gr.Image(label="Upload Image", type="pil", visible=False)  # Hidden initially
    text_input = gr.Textbox(label="Enter Text Query", placeholder="Enter a description or query here", visible=False)  # hidden initially
  
    input_type.change(fn=update_inputs, inputs=input_type, outputs=[image_input, text_input, response_type])
   # state variable to store the selected response amount
    selected_response_amount = gr.State()

    # capture response amount immediately when dropdown changes
    response_type.change(fn=set_response_amount, inputs=response_type, outputs=selected_response_amount)
    
    submit_button = gr.Button("Submit")
    output = gr.Textbox(label="Recommendations")
    if selected_response_amount is None:
        selected_response_amount=3

    submit_button.click(fn=generate_input, inputs=[input_type,image_input, text_input,selected_response_amount], outputs=output)
demo.launch()