File size: 7,655 Bytes
4473ff3 fdf85cd 3331cdd fdf85cd 4473ff3 fdf85cd 3331cdd 68e342d 3331cdd 72a6c00 4473ff3 3331cdd 4473ff3 3331cdd 4473ff3 3331cdd 61804bb 3331cdd fdf85cd 3331cdd fdf85cd 3331cdd fdf85cd 3331cdd fdf85cd 3331cdd fdf85cd 3331cdd fdf85cd 3331cdd fdf85cd 3331cdd fdf85cd 3331cdd bea07d1 fed5fe3 3331cdd bea07d1 3331cdd fdf85cd 3331cdd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
# Gradio Interface
import gradio as gr
import numpy as np
import pandas as pd
from sklearn.metrics.pairwise import cosine_similarity
from sentence_transformers import SentenceTransformer
import requests
from PIL import Image
from transformers import BlipProcessor, BlipForConditionalGeneration
sentence_model = SentenceTransformer("all-MiniLM-L6-v2")
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
image_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
def generate_input(image=None, text=None, model):
# If an image is provided
if image:
inputs = processor(images=image, return_tensors="pt")
out = image_model.generate(**inputs)
image_caption = processor.decode(out[0], skip_special_tokens=True)
else:
image_caption = None
# If text is provided, you can process it accordingly
if text:
text_input = text
else:
text_input = "No text provided."
# Combine image caption and text output
if image_caption and text_input!="No text provided.":
# input = f"Image Caption: {image_caption}\nText Query: {text_output}"
input = image_caption+" "+text_input
elif image_caption:
input = image_caption
elif text:
input = text_input
else:
input = "No input provided."
vector_search(input, model)
# Load embeddings and metadata
embeddings = np.load("netflix_embeddings.npy") #created using sentence_transformers on kaggle
metadata = pd.read_csv("netflix_metadata.csv") #created using sentence_transformers on kaggle
# Vector search function
def vector_search(query, model):
query_embedding = model.encode(query)
similarities = cosine_similarity([query_embedding], embeddings)[0]
top_n = 3
top_indices = similarities.argsort()[-top_n:][::-1]
results = metadata.iloc[top_indices]
# Format results for display
result_text = "\n".join(f"Title: {row['title']}, Description: {row['description']}, Genre: {row['listed_in']}" for _, row in results.iterrows())
return result_text
with gr.Blocks() as demo:
gr.Markdown("# Netflix Recommendation System")
gr.Markdown("Enter a query to receive Netflix show recommendations based on title, description, and genre.")
with gr.Row():
image_input = gr.Image(label="Upload Image", type="pil") # Image input
text_input = gr.Textbox(label="Enter Text Query", placeholder="Enter a description or query here") # Text input
submit_button = gr.Button("Submit")
output = gr.Textbox(label="Recommendations")
submit_button.click(fn=generate_output, inputs=[image_input, text_input, sentence_model], outputs=output)
demo.launch()
# with gr.Blocks() as demo:
# gr.Markdown("# Netflix Recommendation System")
# gr.Markdown("Enter a query to receive Netflix show recommendations based on title, description, and genre.")
# query = gr.Textbox(label="Enter your query")
# output = gr.Textbox(label="Recommendations")
# submit_button = gr.Button("Submit")
# submit_button.click(fn=lambda q: vector_search(q, model), inputs=query, outputs=output)
# import gradio as gr
# # def greet(name):
# # return "Hello " + name + "!!"
# from sentence_transformers import SentenceTransformer
# import numpy as np
# from sklearn.metrics.pairwise import cosine_similarity
# from datasets import load_dataset
# # Load pre-trained SentenceTransformer model
# embedding_model = SentenceTransformer("thenlper/gte-large")
# # # Example dataset with genres (replace with your actual data)
# # dataset = load_dataset("hugginglearners/netflix-shows")
# # dataset = dataset.filter(lambda x: x['description'] is not None and x['listed_in'] is not None and x['title'] is not None)
# # data = dataset['train'] # Accessing the 'train' split of the dataset
# # # Convert the dataset to a list of dictionaries for easier indexing
# # data_list = list[data]
# # print(data_list)
# # # Combine description and genre for embedding
# # def combine_description_title_and_genre(description, listed_in, title):
# # return f"{description} Genre: {listed_in} Title: {title}"
# # # Generate embedding for the query
# # def get_embedding(text):
# # return embedding_model.encode(text)
# # # Vector search function
# # def vector_search(query):
# # query_embedding = get_embedding(query)
# # # Generate embeddings for the combined description and genre
# # embeddings = np.array([get_embedding(combine_description_title_and_genre(item["description"], item["listed_in"],item["title"])) for item in data_list[0]])
# # # Calculate cosine similarity between the query and all embeddings
# # similarities = cosine_similarity([query_embedding], embeddings)
# # Load dataset (using the correct dataset identifier for your case)
# dataset = load_dataset("hugginglearners/netflix-shows")
# # Combine description and genre for embedding
# def combine_description_title_and_genre(description, listed_in, title):
# return f"{description} Genre: {listed_in} Title: {title}"
# # Generate embedding for the query
# def get_embedding(text):
# return embedding_model.encode(text)
# # Vector search function
# def vector_search(query):
# query_embedding = get_embedding(query)
# # Function to generate embeddings for each item in the dataset
# def generate_embeddings(example):
# return {
# 'embedding': get_embedding(combine_description_title_and_genre(example["description"], example["listed_in"], example["title"]))
# }
# # Generate embeddings for the dataset using map
# embeddings_dataset = dataset["train"].map(generate_embeddings)
# # Extract embeddings
# embeddings = np.array([embedding['embedding'] for embedding in embeddings_dataset])
# # Calculate cosine similarity between the query and all embeddings
# similarities = cosine_similarity([query_embedding], embeddings)
# # # Adjust similarity scores based on ratings
# # ratings = np.array([item["rating"] for item in data_list])
# # adjusted_similarities = similarities * ratings.reshape(-1, 1)
# # Get top N most similar items (e.g., top 3)
# top_n = 3
# top_indices = similarities[0].argsort()[-top_n:][::-1] # Get indices of the top N results
# top_items = [dataset["train"][i] for i in top_indices]
# # Format the output for display
# search_result = ""
# for item in top_items:
# search_result += f"Title: {item['title']}, Description: {item['description']}, Genre: {item['listed_in']}\n"
# return search_result
# # Gradio Interface
# def movie_search(query):
# return vector_search(query)
# with gr.Blocks() as demo:
# gr.Markdown("# Netflix Recommendation System")
# gr.Markdown("Enter a query to receive Netflix show recommendations based on title, description, and genre.")
# query = gr.Textbox(label="Enter your query")
# output = gr.Textbox(label="Recommendations")
# submit_button = gr.Button("Submit")
# submit_button.click(fn=movie_search, inputs=query, outputs=output)
# demo.launch()
# # iface = gr.Interface(fn=movie_search,
# # inputs=gr.inputs.Textbox(label="Enter your query"),
# # outputs="text",
# # live=True,
# # title="Netflix Recommendation System",
# # description="Enter a query to get Netflix recommendations based on description and genre.")
# # iface.launch()
# # demo = gr.Interface(fn=greet, inputs="text", outputs="text")
# # demo.launch()
|