File size: 7,647 Bytes
a91b96e
 
7cfda54
a91b96e
 
 
 
 
 
 
 
 
 
 
 
 
7cfda54
a91b96e
 
 
 
 
 
 
 
 
 
 
 
7cfda54
a91b96e
 
 
 
 
c4a83ac
7cfda54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a91b96e
7cfda54
a91b96e
7cfda54
a91b96e
 
7cfda54
a91b96e
 
 
 
 
 
 
7cfda54
a91b96e
 
7cfda54
a91b96e
 
 
 
 
 
 
 
 
7cfda54
 
a91b96e
 
 
 
7cfda54
a91b96e
 
7cfda54
a91b96e
 
7cfda54
a91b96e
 
 
 
 
 
 
7cfda54
a91b96e
 
7cfda54
a91b96e
 
 
 
7cfda54
a91b96e
 
 
 
 
7cfda54
a91b96e
 
 
 
 
7cfda54
 
a91b96e
 
 
 
 
7cfda54
a91b96e
 
7cfda54
a91b96e
 
7cfda54
 
a91b96e
 
 
 
 
 
 
 
 
7cfda54
a91b96e
 
 
 
 
 
 
 
 
 
 
7cfda54
a91b96e
 
7cfda54
a91b96e
 
 
 
7cfda54
a91b96e
 
 
 
 
 
7cfda54
 
a91b96e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7cfda54
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import gradio as gr
from datasets import load_dataset
from PIL import Image
import re
import os
import requests

from share_btn import community_icon_html, loading_icon_html, share_js

model_id = "runwayml/stable-diffusion-v1-5"
device = "cuda"

word_list_dataset = load_dataset("stabilityai/word-list", data_files="list.txt", use_auth_token=True)
word_list = word_list_dataset["train"]['text']

is_gpu_busy = False

def infer(prompt):
    global is_gpu_busy
    samples = 4
    steps = 50
    scale = 7.5
    for filter in word_list:
        if re.search(rf"\b{filter}\b", prompt):
            raise gr.Error("Unsafe content found. Please try again with different prompts.")
        
    images = []
    url = os.getenv('JAX_BACKEND_URL')
    payload = {'prompt': prompt}
    images_request = requests.post(url, json=payload)
    for image in images_request.json()["images"]:
        image_b64 = (f"data:image/jpeg;base64,{image}")
        images.append(image_b64)
    
    return images

API_URL = "https://edmx2y4mrvq3tal8.us-east-1.aws.endpoints.huggingface.cloud"  # Replace with your actual API URL
headers = {"Content-Type": "application/json"}

def query(payload):
    response = requests.post(API_URL, headers=headers, json=payload)
    return response.content

def generate(prompt):   
    payload = {
        "inputs": prompt,
        "parameters": {
            "height": 1024,
            "width": 1024,
            "num_inference_steps": 25,
                "negative_prompt": "deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, (NSFW:1.25)",
                "num_images_per_prompt": 4           
        }
    }
    output = query(payload)
    images = []
    for i in range(4):
        image = Image.open(io.BytesIO(output))
        images.append(image)
    return images
    

css = """
       .gradio-container {
            font-family: 'IBM Plex Sans', sans-serif;
        }
       .gr-button {
            color: white;
            border-color: black;
            background: black;
        }
        input[type='range'] {
            accent-color: black;
        }
       .dark input[type='range'] {
            accent-color: #dfdfdf;
        }
       .container {
            max-width: 730px;
            margin: auto;
            padding-top: 1.5rem;
        }
        #gallery {
            min-height: 22rem;
            margin-bottom: 15px;
            margin-left: auto;
            margin-right: auto;
            border-bottom-right-radius:.5rem!important;
            border-bottom-left-radius:.5rem!important;
        }
        #gallery>div>.h-full {
            min-height: 20rem;
        }
       .details:hover {
            text-decoration: underline;
        }
       .gr-button {
            white-space: nowrap;
        }
       .gr-button:focus {
            border-color: rgb(147 197 253 / var(--tw-border-opacity));
            outline: none;
            box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
            --tw-border-opacity: 1;
            --tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
            --tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
            --tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
            --tw-ring-opacity:.5;
        }
        #advanced-btn {
            font-size:.7rem!important;
            line-height: 19px;
            margin-top: 12px;
            margin-bottom: 12px;
            padding: 2px 8px;
            border-radius: 14px!important;
        }
        #advanced-options {
            display: none;
            margin-bottom: 20px;
        }
       .footer {
            margin-bottom: 45px;
            margin-top: 35px;
            text-align: center;
            border-bottom: 1px solid #e5e5e5;
        }
       .footer>p {
            font-size:.8rem;
            display: inline-block;
            padding: 0 10px;
            transform: translateY(10px);
            background: white;
        }
       .dark.footer {
            border-color: #303030;
        }
       .dark.footer>p {
            background: #0b0f19;
        }
       .acknowledgments h4{
            margin: 1.25em 0.25em 0;
            font-weight: bold;
            font-size: 115%;
        }
        #container-advanced-btns{
            display: flex;
            flex-wrap: wrap;
            justify-content: space-between;
            align-items: center;
        }
       .animate-spin {
            animation: spin 1s linear infinite;
        }
        @keyframes spin {
            from {
                transform: rotate(0deg);
            }
            to {
                transform: rotate(360deg);
            }
        }
        #share-btn-container {
            display: flex; padding-left: 0.5rem!important; padding-right: 0.5rem!important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px!important; width: 13rem;
        }
        #share-btn {
            all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem!important; padding-top: 0.25rem!important; padding-bottom: 0.25rem!important;
        }
        #share-btn * {
            all: unset;
        }
       .gr-form{
            flex: 1 1 50%; border-top-right-radius: 0; border-bottom-right-radius: 0;
        }
        #prompt-container{
            gap: 0;
        }
        #share-btn-container div:nth-child(-n+2){
        width: auto!important;
        min-height: 0px!important;
        } 
"""

block = gr.Blocks(css=css)

examples = [
    [
        'The spirit of a tamagotchi wandering in the city of Paris',
#        4,
#        45,
#        7.5,
#        1024,
    ],
    [
        'A delicious ceviche cheesecake slice',
#        4,
#        45,
#        7,
#        1024,
    ],
    [
        'A pao de queijo foodcart in front of a japanese castle',
#        4,
#        45,
#        7,
#        1024,
    ],
    [
        'alone in the amusement park by Edward Hopper',
#        4,
#        45,
#        7,
#        1024,
    ],
    [
        "A large cabin on top of a sunny mountain in the style of Dreamworks, artstation",
#        4,
#        45,
#        7,
#        1024,
    ],
]


with block:
    gr.HTML(
        """
            <div style="text-align: center; max-width: 650px; margin: 0 auto; padding-top: 7px;">
              <div
                style="
                  display: inline-flex;
                  align-items: center;
                  gap: 0.8rem;
                  font-size: 1.75rem;
                "
              >
                <h1 style="font-weight: 900; margin-bottom: 7px;">
                  Stable Diffusion v1-5 Demo
                </h1>
              </div>
              <p style="margin-bottom: 10px; font-size: 94%">
                Stable Diffusion v1-5 is the latest version of the state of the art text-to-image model.<br>For faster generation you can try
      <a href="https://app.runwayml.com/ai-tools/text-to-image"
        style="text-decoration: underline;" target="_blank">text to image tool at Runway.</a>
              </p>
            </div>
        """
    )
    with gr.Group():
        with gr.Box():
            with gr.Row(elem_id="prompt-container").style(mobile_collapse=False, equal_height=True):
                text = gr.Textbox(