Spaces:
Runtime error
Runtime error
File size: 4,119 Bytes
448d919 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
#!/usr/bin/env python
import random
import gradio as gr
import numpy as np
import PIL.Image
import torch
from diffusers import DDPMScheduler, StableDiffusionXLAdapterPipeline, T2IAdapter
DESCRIPTION = "# T2I-Adapter-SDXL Sketch"
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if torch.cuda.is_available():
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
adapter = T2IAdapter.from_pretrained(
"Adapter/t2iadapter",
subfolder="sketch_sdxl_1.0",
torch_dtype=torch.float16,
adapter_type="full_adapter_xl",
)
scheduler = DDPMScheduler.from_pretrained(model_id, subfolder="scheduler")
pipe = StableDiffusionXLAdapterPipeline.from_pretrained(
model_id,
adapter=adapter,
safety_checker=None,
torch_dtype=torch.float16,
variant="fp16",
scheduler=scheduler,
)
pipe.to(device)
else:
pipe = None
MAX_SEED = np.iinfo(np.int32).max
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def run(
image: PIL.Image.Image,
prompt: str,
negative_prompt: str,
num_steps=50,
guidance_scale=7.5,
seed=0,
) -> PIL.Image.Image:
# Convert the input image, which is a boolean image, to a grayscale image whose value is 0 or 255.
image = image.convert("L")
generator = torch.Generator(device=device).manual_seed(seed)
out = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image=image,
num_inference_steps=num_steps,
generator=generator,
guidance_scale=guidance_scale,
).images[0]
return out
with gr.Blocks() as demo:
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column():
image = gr.Image(
source="canvas",
tool="sketch",
type="pil",
image_mode="1",
invert_colors=True,
shape=(1024, 1024),
brush_radius=20,
height=600,
)
prompt = gr.Textbox(label="Prompt")
run_button = gr.Button("Run")
with gr.Accordion("Advanced options", open=False):
negative_prompt = gr.Textbox(
label="Negative prompt", value="extra digit, fewer digits, cropped, worst quality, low quality"
)
num_steps = gr.Slider(
label="Number of steps",
minimum=1,
maximum=100,
step=1,
value=50,
)
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.1,
maximum=30.0,
step=0.1,
value=7.5,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Column():
result = gr.Image(label="Result", height=600)
inputs = [
image,
prompt,
negative_prompt,
num_steps,
guidance_scale,
seed,
]
prompt.submit(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=run,
inputs=inputs,
outputs=result,
api_name=False,
)
run_button.click(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=run,
inputs=inputs,
outputs=result,
api_name="run",
)
if __name__ == "__main__":
demo.queue(max_size=20).launch()
|