l-li's picture
init(*): initialization.
0b23d5a
import torch
import torch.nn as nn
from collections import OrderedDict
from extralibs.cond_api import ExtraCondition
from core.modules.x_transformer import FixedPositionalEmbedding
from core.basics import zero_module, conv_nd, avg_pool_nd
class Downsample(nn.Module):
"""
A downsampling layer with an optional convolution.
:param channels: channels in the inputs and outputs.
:param use_conv: a bool determining if a convolution is applied.
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
downsampling occurs in the inner-two dimensions.
"""
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.dims = dims
stride = 2 if dims != 3 else (1, 2, 2)
if use_conv:
self.op = conv_nd(
dims,
self.channels,
self.out_channels,
3,
stride=stride,
padding=padding,
)
else:
assert self.channels == self.out_channels
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
def forward(self, x):
assert x.shape[1] == self.channels
return self.op(x)
class ResnetBlock(nn.Module):
def __init__(self, in_c, out_c, down, ksize=3, sk=False, use_conv=True):
super().__init__()
ps = ksize // 2
if in_c != out_c or sk == False:
self.in_conv = nn.Conv2d(in_c, out_c, ksize, 1, ps)
else:
self.in_conv = None
self.block1 = nn.Conv2d(out_c, out_c, 3, 1, 1)
self.act = nn.ReLU()
self.block2 = nn.Conv2d(out_c, out_c, ksize, 1, ps)
if sk == False:
self.skep = nn.Conv2d(in_c, out_c, ksize, 1, ps)
else:
self.skep = None
self.down = down
if self.down == True:
self.down_opt = Downsample(in_c, use_conv=use_conv)
def forward(self, x):
if self.down == True:
x = self.down_opt(x)
if self.in_conv is not None:
x = self.in_conv(x)
h = self.block1(x)
h = self.act(h)
h = self.block2(h)
if self.skep is not None:
return h + self.skep(x)
else:
return h + x
class Adapter(nn.Module):
def __init__(
self,
channels=[320, 640, 1280, 1280],
nums_rb=3,
cin=64,
ksize=3,
sk=True,
use_conv=True,
stage_downscale=True,
use_identity=False,
):
super(Adapter, self).__init__()
if use_identity:
self.inlayer = nn.Identity()
else:
self.inlayer = nn.PixelUnshuffle(8)
self.channels = channels
self.nums_rb = nums_rb
self.body = []
for i in range(len(channels)):
for j in range(nums_rb):
if (i != 0) and (j == 0):
self.body.append(
ResnetBlock(
channels[i - 1],
channels[i],
down=stage_downscale,
ksize=ksize,
sk=sk,
use_conv=use_conv,
)
)
else:
self.body.append(
ResnetBlock(
channels[i],
channels[i],
down=False,
ksize=ksize,
sk=sk,
use_conv=use_conv,
)
)
self.body = nn.ModuleList(self.body)
self.conv_in = nn.Conv2d(cin, channels[0], 3, 1, 1)
def forward(self, x):
# unshuffle
x = self.inlayer(x)
# extract features
features = []
x = self.conv_in(x)
for i in range(len(self.channels)):
for j in range(self.nums_rb):
idx = i * self.nums_rb + j
x = self.body[idx](x)
features.append(x)
return features
class PositionNet(nn.Module):
def __init__(self, input_size=(40, 64), cin=4, dim=512, out_dim=1024):
super().__init__()
self.input_size = input_size
self.out_dim = out_dim
self.down_factor = 8 # determined by the convnext backbone
feature_dim = dim
self.backbone = Adapter(
channels=[64, 128, 256, feature_dim],
nums_rb=2,
cin=cin,
stage_downscale=True,
use_identity=True,
)
self.num_tokens = (self.input_size[0] // self.down_factor) * (
self.input_size[1] // self.down_factor
)
self.pos_embedding = nn.Parameter(
torch.empty(1, self.num_tokens, feature_dim).normal_(std=0.02)
) # from BERT
self.linears = nn.Sequential(
nn.Linear(feature_dim, 512),
nn.SiLU(),
nn.Linear(512, 512),
nn.SiLU(),
nn.Linear(512, out_dim),
)
# self.null_feature = torch.nn.Parameter(torch.zeros([feature_dim]))
def forward(self, x, mask=None):
B = x.shape[0]
# token from edge map
# x = torch.nn.functional.interpolate(x, self.input_size)
feature = self.backbone(x)[-1]
objs = feature.reshape(B, -1, self.num_tokens)
objs = objs.permute(0, 2, 1) # N*Num_tokens*dim
"""
# expand null token
null_objs = self.null_feature.view(1,1,-1)
null_objs = null_objs.repeat(B,self.num_tokens,1)
# mask replacing
mask = mask.view(-1,1,1)
objs = objs*mask + null_objs*(1-mask)
"""
# add pos
objs = objs + self.pos_embedding
# fuse them
objs = self.linears(objs)
assert objs.shape == torch.Size([B, self.num_tokens, self.out_dim])
return objs
class PositionNet2(nn.Module):
def __init__(self, input_size=(40, 64), cin=4, dim=320, out_dim=1024):
super().__init__()
self.input_size = input_size
self.out_dim = out_dim
self.down_factor = 8 # determined by the convnext backbone
self.dim = dim
self.backbone = Adapter(
channels=[dim, dim, dim, dim],
nums_rb=2,
cin=cin,
stage_downscale=True,
use_identity=True,
)
self.pos_embedding = FixedPositionalEmbedding(dim=self.dim)
self.linears = nn.Sequential(
nn.Linear(dim, 512),
nn.SiLU(),
nn.Linear(512, 512),
nn.SiLU(),
nn.Linear(512, out_dim),
)
def forward(self, x, mask=None):
B = x.shape[0]
features = self.backbone(x)
token_lists = []
for feature in features:
objs = feature.reshape(B, self.dim, -1)
objs = objs.permute(0, 2, 1) # N*Num_tokens*dim
# add pos
objs = objs + self.pos_embedding(objs)
# fuse them
objs = self.linears(objs)
token_lists.append(objs)
return token_lists
class LayerNorm(nn.LayerNorm):
"""Subclass torch's LayerNorm to handle fp16."""
def forward(self, x: torch.Tensor):
orig_type = x.dtype
ret = super().forward(x.type(torch.float32))
return ret.type(orig_type)
class QuickGELU(nn.Module):
def forward(self, x: torch.Tensor):
return x * torch.sigmoid(1.702 * x)
class ResidualAttentionBlock(nn.Module):
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
super().__init__()
self.attn = nn.MultiheadAttention(d_model, n_head)
self.ln_1 = LayerNorm(d_model)
self.mlp = nn.Sequential(
OrderedDict(
[
("c_fc", nn.Linear(d_model, d_model * 4)),
("gelu", QuickGELU()),
("c_proj", nn.Linear(d_model * 4, d_model)),
]
)
)
self.ln_2 = LayerNorm(d_model)
self.attn_mask = attn_mask
def attention(self, x: torch.Tensor):
self.attn_mask = (
self.attn_mask.to(dtype=x.dtype, device=x.device)
if self.attn_mask is not None
else None
)
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
def forward(self, x: torch.Tensor):
x = x + self.attention(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
class StyleAdapter(nn.Module):
def __init__(self, width=1024, context_dim=768, num_head=8, n_layes=3, num_token=4):
super().__init__()
scale = width**-0.5
self.transformer_layes = nn.Sequential(
*[ResidualAttentionBlock(width, num_head) for _ in range(n_layes)]
)
self.num_token = num_token
self.style_embedding = nn.Parameter(torch.randn(1, num_token, width) * scale)
self.ln_post = LayerNorm(width)
self.ln_pre = LayerNorm(width)
self.proj = nn.Parameter(scale * torch.randn(width, context_dim))
def forward(self, x):
# x shape [N, HW+1, C]
style_embedding = self.style_embedding + torch.zeros(
(x.shape[0], self.num_token, self.style_embedding.shape[-1]),
device=x.device,
)
x = torch.cat([x, style_embedding], dim=1)
x = self.ln_pre(x)
x = x.permute(1, 0, 2) # NLD -> LND
x = self.transformer_layes(x)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.ln_post(x[:, -self.num_token :, :])
x = x @ self.proj
return x
class ResnetBlock_light(nn.Module):
def __init__(self, in_c):
super().__init__()
self.block1 = nn.Conv2d(in_c, in_c, 3, 1, 1)
self.act = nn.ReLU()
self.block2 = nn.Conv2d(in_c, in_c, 3, 1, 1)
def forward(self, x):
h = self.block1(x)
h = self.act(h)
h = self.block2(h)
return h + x
class extractor(nn.Module):
def __init__(self, in_c, inter_c, out_c, nums_rb, down=False):
super().__init__()
self.in_conv = nn.Conv2d(in_c, inter_c, 1, 1, 0)
self.body = []
for _ in range(nums_rb):
self.body.append(ResnetBlock_light(inter_c))
self.body = nn.Sequential(*self.body)
self.out_conv = nn.Conv2d(inter_c, out_c, 1, 1, 0)
self.down = down
if self.down == True:
self.down_opt = Downsample(in_c, use_conv=False)
def forward(self, x):
if self.down == True:
x = self.down_opt(x)
x = self.in_conv(x)
x = self.body(x)
x = self.out_conv(x)
return x
class Adapter_light(nn.Module):
def __init__(self, channels=[320, 640, 1280, 1280], nums_rb=3, cin=64):
super(Adapter_light, self).__init__()
self.unshuffle = nn.PixelUnshuffle(8)
self.channels = channels
self.nums_rb = nums_rb
self.body = []
for i in range(len(channels)):
if i == 0:
self.body.append(
extractor(
in_c=cin,
inter_c=channels[i] // 4,
out_c=channels[i],
nums_rb=nums_rb,
down=False,
)
)
else:
self.body.append(
extractor(
in_c=channels[i - 1],
inter_c=channels[i] // 4,
out_c=channels[i],
nums_rb=nums_rb,
down=True,
)
)
self.body = nn.ModuleList(self.body)
def forward(self, x):
# unshuffle
x = self.unshuffle(x)
# extract features
features = []
for i in range(len(self.channels)):
x = self.body[i](x)
features.append(x)
return features
class CoAdapterFuser(nn.Module):
def __init__(
self, unet_channels=[320, 640, 1280, 1280], width=768, num_head=8, n_layes=3
):
super(CoAdapterFuser, self).__init__()
scale = width**0.5
self.task_embedding = nn.Parameter(scale * torch.randn(16, width))
self.positional_embedding = nn.Parameter(
scale * torch.randn(len(unet_channels), width)
)
self.spatial_feat_mapping = nn.ModuleList()
for ch in unet_channels:
self.spatial_feat_mapping.append(
nn.Sequential(
nn.SiLU(),
nn.Linear(ch, width),
)
)
self.transformer_layes = nn.Sequential(
*[ResidualAttentionBlock(width, num_head) for _ in range(n_layes)]
)
self.ln_post = LayerNorm(width)
self.ln_pre = LayerNorm(width)
self.spatial_ch_projs = nn.ModuleList()
for ch in unet_channels:
self.spatial_ch_projs.append(zero_module(nn.Linear(width, ch)))
self.seq_proj = nn.Parameter(torch.zeros(width, width))
def forward(self, features):
if len(features) == 0:
return None, None
inputs = []
for cond_name in features.keys():
task_idx = getattr(ExtraCondition, cond_name).value
if not isinstance(features[cond_name], list):
inputs.append(features[cond_name] + self.task_embedding[task_idx])
continue
feat_seq = []
for idx, feature_map in enumerate(features[cond_name]):
feature_vec = torch.mean(feature_map, dim=(2, 3))
feature_vec = self.spatial_feat_mapping[idx](feature_vec)
feat_seq.append(feature_vec)
feat_seq = torch.stack(feat_seq, dim=1) # Nx4xC
feat_seq = feat_seq + self.task_embedding[task_idx]
feat_seq = feat_seq + self.positional_embedding
inputs.append(feat_seq)
x = torch.cat(inputs, dim=1) # NxLxC
x = self.ln_pre(x)
x = x.permute(1, 0, 2) # NLD -> LND
x = self.transformer_layes(x)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.ln_post(x)
ret_feat_map = None
ret_feat_seq = None
cur_seq_idx = 0
for cond_name in features.keys():
if not isinstance(features[cond_name], list):
length = features[cond_name].size(1)
transformed_feature = features[cond_name] * (
(x[:, cur_seq_idx : cur_seq_idx + length] @ self.seq_proj) + 1
)
if ret_feat_seq is None:
ret_feat_seq = transformed_feature
else:
ret_feat_seq = torch.cat([ret_feat_seq, transformed_feature], dim=1)
cur_seq_idx += length
continue
length = len(features[cond_name])
transformed_feature_list = []
for idx in range(length):
alpha = self.spatial_ch_projs[idx](x[:, cur_seq_idx + idx])
alpha = alpha.unsqueeze(-1).unsqueeze(-1) + 1
transformed_feature_list.append(features[cond_name][idx] * alpha)
if ret_feat_map is None:
ret_feat_map = transformed_feature_list
else:
ret_feat_map = list(
map(lambda x, y: x + y, ret_feat_map, transformed_feature_list)
)
cur_seq_idx += length
assert cur_seq_idx == x.size(1)
return ret_feat_map, ret_feat_seq