File size: 20,186 Bytes
0b23d5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
"""SAMPLING ONLY."""

import numpy as np
import torch
from einops import rearrange
from tqdm import tqdm

from core.common import noise_like
from core.models.utils_diffusion import (
    make_ddim_sampling_parameters,
    make_ddim_time_steps,
    rescale_noise_cfg,
)


class DDIMSampler(object):
    def __init__(self, model, schedule="linear", **kwargs):
        super().__init__()
        self.model = model
        self.ddpm_num_time_steps = model.num_time_steps
        self.schedule = schedule
        self.counter = 0

    def register_buffer(self, name, attr):
        if type(attr) == torch.Tensor:
            if attr.device != torch.device("cuda"):
                attr = attr.to(torch.device("cuda"))
        setattr(self, name, attr)

    def make_schedule(
        self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0.0, verbose=True
    ):
        self.ddim_time_steps = make_ddim_time_steps(
            ddim_discr_method=ddim_discretize,
            num_ddim_time_steps=ddim_num_steps,
            num_ddpm_time_steps=self.ddpm_num_time_steps,
            verbose=verbose,
        )
        alphas_cumprod = self.model.alphas_cumprod
        assert (
            alphas_cumprod.shape[0] == self.ddpm_num_time_steps
        ), "alphas have to be defined for each timestep"

        def to_torch(x):
            return x.clone().detach().to(torch.float32).to(self.model.device)

        if self.model.use_dynamic_rescale:
            self.ddim_scale_arr = self.model.scale_arr[self.ddim_time_steps]
            self.ddim_scale_arr_prev = torch.cat(
                [self.ddim_scale_arr[0:1], self.ddim_scale_arr[:-1]]
            )

        self.register_buffer("betas", to_torch(self.model.betas))
        self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod))
        self.register_buffer(
            "alphas_cumprod_prev", to_torch(self.model.alphas_cumprod_prev)
        )

        # calculations for diffusion q(x_t | x_{t-1}) and others
        self.register_buffer(
            "sqrt_alphas_cumprod", to_torch(np.sqrt(alphas_cumprod.cpu()))
        )
        self.register_buffer(
            "sqrt_one_minus_alphas_cumprod",
            to_torch(np.sqrt(1.0 - alphas_cumprod.cpu())),
        )
        self.register_buffer(
            "log_one_minus_alphas_cumprod", to_torch(np.log(1.0 - alphas_cumprod.cpu()))
        )
        self.register_buffer(
            "sqrt_recip_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod.cpu()))
        )
        self.register_buffer(
            "sqrt_recipm1_alphas_cumprod",
            to_torch(np.sqrt(1.0 / alphas_cumprod.cpu() - 1)),
        )

        # ddim sampling parameters
        ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(
            alphacums=alphas_cumprod.cpu(),
            ddim_time_steps=self.ddim_time_steps,
            eta=ddim_eta,
            verbose=verbose,
        )
        self.register_buffer("ddim_sigmas", ddim_sigmas)
        self.register_buffer("ddim_alphas", ddim_alphas)
        self.register_buffer("ddim_alphas_prev", ddim_alphas_prev)
        self.register_buffer("ddim_sqrt_one_minus_alphas", np.sqrt(1.0 - ddim_alphas))
        sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
            (1 - self.alphas_cumprod_prev)
            / (1 - self.alphas_cumprod)
            * (1 - self.alphas_cumprod / self.alphas_cumprod_prev)
        )
        self.register_buffer(
            "ddim_sigmas_for_original_num_steps", sigmas_for_original_sampling_steps
        )

    @torch.no_grad()
    def sample(
        self,
        S,
        batch_size,
        shape,
        conditioning=None,
        callback=None,
        img_callback=None,
        quantize_x0=False,
        eta=0.0,
        mask=None,
        x0=None,
        temperature=1.0,
        noise_dropout=0.0,
        score_corrector=None,
        corrector_kwargs=None,
        verbose=True,
        schedule_verbose=False,
        x_T=None,
        log_every_t=100,
        unconditional_guidance_scale=1.0,
        unconditional_conditioning=None,
        unconditional_guidance_scale_extra=1.0,
        unconditional_conditioning_extra=None,
        with_extra_returned_data=False,
        **kwargs,
    ):

        # check condition bs
        if conditioning is not None:
            if isinstance(conditioning, dict):
                try:
                    cbs = conditioning[list(conditioning.keys())[0]].shape[0]
                except:
                    cbs = conditioning[list(conditioning.keys())[0]][0].shape[0]

                if cbs != batch_size:
                    print(
                        f"Warning: Got {cbs} conditionings but batch-size is {batch_size}"
                    )
            else:
                if conditioning.shape[0] != batch_size:
                    print(
                        f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}"
                    )

        self.skip_step = self.ddpm_num_time_steps // S
        discr_method = (
            "uniform_trailing" if self.model.rescale_betas_zero_snr else "uniform"
        )
        self.make_schedule(
            ddim_num_steps=S,
            ddim_discretize=discr_method,
            ddim_eta=eta,
            verbose=schedule_verbose,
        )

        # make shape
        if len(shape) == 3:
            C, H, W = shape
            size = (batch_size, C, H, W)
        elif len(shape) == 4:
            T, C, H, W = shape
            size = (batch_size, T, C, H, W)
        else:
            assert False, f"Invalid shape: {shape}."
        out = self.ddim_sampling(
            conditioning,
            size,
            callback=callback,
            img_callback=img_callback,
            quantize_denoised=quantize_x0,
            mask=mask,
            x0=x0,
            ddim_use_original_steps=False,
            noise_dropout=noise_dropout,
            temperature=temperature,
            score_corrector=score_corrector,
            corrector_kwargs=corrector_kwargs,
            x_T=x_T,
            log_every_t=log_every_t,
            unconditional_guidance_scale=unconditional_guidance_scale,
            unconditional_conditioning=unconditional_conditioning,
            unconditional_guidance_scale_extra=unconditional_guidance_scale_extra,
            unconditional_conditioning_extra=unconditional_conditioning_extra,
            verbose=verbose,
            with_extra_returned_data=with_extra_returned_data,
            **kwargs,
        )
        if with_extra_returned_data:
            samples, intermediates, extra_returned_data = out
            return samples, intermediates, extra_returned_data
        else:
            samples, intermediates = out
            return samples, intermediates

    @torch.no_grad()
    def ddim_sampling(
        self,
        cond,
        shape,
        x_T=None,
        ddim_use_original_steps=False,
        callback=None,
        time_steps=None,
        quantize_denoised=False,
        mask=None,
        x0=None,
        img_callback=None,
        log_every_t=100,
        temperature=1.0,
        noise_dropout=0.0,
        score_corrector=None,
        corrector_kwargs=None,
        unconditional_guidance_scale=1.0,
        unconditional_conditioning=None,
        unconditional_guidance_scale_extra=1.0,
        unconditional_conditioning_extra=None,
        verbose=True,
        with_extra_returned_data=False,
        **kwargs,
    ):
        device = self.model.betas.device
        b = shape[0]
        if x_T is None:
            img = torch.randn(shape, device=device, dtype=self.model.dtype)
            if self.model.bd_noise:
                noise_decor = self.model.bd(img)
                noise_decor = (noise_decor - noise_decor.mean()) / (
                    noise_decor.std() + 1e-5
                )
                noise_f = noise_decor[:, :, 0:1, :, :]
                noise = (
                    np.sqrt(self.model.bd_ratio) * noise_decor[:, :, 1:]
                    + np.sqrt(1 - self.model.bd_ratio) * noise_f
                )
                img = torch.cat([noise_f, noise], dim=2)
        else:
            img = x_T

        if time_steps is None:
            time_steps = (
                self.ddpm_num_time_steps
                if ddim_use_original_steps
                else self.ddim_time_steps
            )
        elif time_steps is not None and not ddim_use_original_steps:
            subset_end = (
                int(
                    min(time_steps / self.ddim_time_steps.shape[0], 1)
                    * self.ddim_time_steps.shape[0]
                )
                - 1
            )
            time_steps = self.ddim_time_steps[:subset_end]

        intermediates = {"x_inter": [img], "pred_x0": [img]}
        time_range = (
            reversed(range(0, time_steps))
            if ddim_use_original_steps
            else np.flip(time_steps)
        )
        total_steps = time_steps if ddim_use_original_steps else time_steps.shape[0]
        if verbose:
            iterator = tqdm(time_range, desc="DDIM Sampler", total=total_steps)
        else:
            iterator = time_range
        # Sampling Loop
        for i, step in enumerate(iterator):
            print(f"Sample: i={i}, step={step}.")
            index = total_steps - i - 1
            ts = torch.full((b,), step, device=device, dtype=torch.long)
            print("ts=", ts)
            # use mask to blend noised original latent (img_orig) & new sampled latent (img)
            if mask is not None:
                assert x0 is not None
                img_orig = x0
                # keep original & modify use img
                img = img_orig * mask + (1.0 - mask) * img
            outs = self.p_sample_ddim(
                img,
                cond,
                ts,
                index=index,
                use_original_steps=ddim_use_original_steps,
                quantize_denoised=quantize_denoised,
                temperature=temperature,
                noise_dropout=noise_dropout,
                score_corrector=score_corrector,
                corrector_kwargs=corrector_kwargs,
                unconditional_guidance_scale=unconditional_guidance_scale,
                unconditional_conditioning=unconditional_conditioning,
                unconditional_guidance_scale_extra=unconditional_guidance_scale_extra,
                unconditional_conditioning_extra=unconditional_conditioning_extra,
                with_extra_returned_data=with_extra_returned_data,
                **kwargs,
            )
            if with_extra_returned_data:
                img, pred_x0, extra_returned_data = outs
            else:
                img, pred_x0 = outs
            if callback:
                callback(i)
            if img_callback:
                img_callback(pred_x0, i)
            # log_every_t = 1
            if index % log_every_t == 0 or index == total_steps - 1:
                intermediates["x_inter"].append(img)
                intermediates["pred_x0"].append(pred_x0)
                # intermediates['extra_returned_data'].append(extra_returned_data)
        if with_extra_returned_data:
            return img, intermediates, extra_returned_data
        return img, intermediates

    def batch_time_transpose(
        self, batch_time_tensor, num_target_views, num_condition_views
    ):
        # Input: N*N; N = T+C
        assert num_target_views + num_condition_views == batch_time_tensor.shape[1]
        target_tensor = batch_time_tensor[:, :num_target_views, ...]  # T*T
        condition_tensor = batch_time_tensor[:, num_target_views:, ...]  # N*C
        target_tensor = target_tensor.transpose(0, 1)  # T*T
        return torch.concat([target_tensor, condition_tensor], dim=1)

    def ddim_batch_shard_step(
        self,
        pred_x0_post_process_function,
        pred_x0_post_process_function_kwargs,
        cond,
        corrector_kwargs,
        ddim_use_original_steps,
        device,
        img,
        index,
        kwargs,
        noise_dropout,
        quantize_denoised,
        score_corrector,
        step,
        temperature,
        with_extra_returned_data,
    ):
        img_list = []
        pred_x0_list = []
        shard_step = 5
        shard_start = 0
        while shard_start < img.shape[0]:
            shard_end = shard_start + shard_step
            if shard_start >= img.shape[0]:
                break
            if shard_end > img.shape[0]:
                shard_end = img.shape[0]
            print(
                f"Sampling Batch Shard: From #{shard_start} to #{shard_end}. Total: {img.shape[0]}."
            )
            sub_img = img[shard_start:shard_end]
            sub_cond = {
                "combined_condition": cond["combined_condition"][shard_start:shard_end],
                "c_crossattn": [
                    cond["c_crossattn"][0][0:1].expand(shard_end - shard_start, -1, -1)
                ],
            }
            ts = torch.full((sub_img.shape[0],), step, device=device, dtype=torch.long)

            _img, _pred_x0 = self.p_sample_ddim(
                sub_img,
                sub_cond,
                ts,
                index=index,
                use_original_steps=ddim_use_original_steps,
                quantize_denoised=quantize_denoised,
                temperature=temperature,
                noise_dropout=noise_dropout,
                score_corrector=score_corrector,
                corrector_kwargs=corrector_kwargs,
                unconditional_guidance_scale=1.0,
                unconditional_conditioning=None,
                unconditional_guidance_scale_extra=1.0,
                unconditional_conditioning_extra=None,
                pred_x0_post_process_function=pred_x0_post_process_function,
                pred_x0_post_process_function_kwargs=pred_x0_post_process_function_kwargs,
                with_extra_returned_data=with_extra_returned_data,
                **kwargs,
            )
            img_list.append(_img)
            pred_x0_list.append(_pred_x0)
            shard_start += shard_step
        img = torch.concat(img_list, dim=0)
        pred_x0 = torch.concat(pred_x0_list, dim=0)
        return img, pred_x0

    @torch.no_grad()
    def p_sample_ddim(
        self,
        x,
        c,
        t,
        index,
        repeat_noise=False,
        use_original_steps=False,
        quantize_denoised=False,
        temperature=1.0,
        noise_dropout=0.0,
        score_corrector=None,
        corrector_kwargs=None,
        unconditional_guidance_scale=1.0,
        unconditional_conditioning=None,
        unconditional_guidance_scale_extra=1.0,
        unconditional_conditioning_extra=None,
        with_extra_returned_data=False,
        **kwargs,
    ):
        b, *_, device = *x.shape, x.device
        if x.dim() == 5:
            is_video = True
        else:
            is_video = False

        extra_returned_data = None
        if unconditional_conditioning is None or unconditional_guidance_scale == 1.0:
            e_t_cfg = self.model.apply_model(x, t, c, **kwargs)  # unet denoiser
            if isinstance(e_t_cfg, tuple):
                e_t_cfg = e_t_cfg[0]
                extra_returned_data = e_t_cfg[1:]
        else:
            # with unconditional condition
            if isinstance(c, torch.Tensor) or isinstance(c, dict):
                e_t = self.model.apply_model(x, t, c, **kwargs)
                e_t_uncond = self.model.apply_model(
                    x, t, unconditional_conditioning, **kwargs
                )
                if (
                    unconditional_guidance_scale_extra != 1.0
                    and unconditional_conditioning_extra is not None
                ):
                    print(f"Using extra CFG: {unconditional_guidance_scale_extra}...")
                    e_t_uncond_extra = self.model.apply_model(
                        x, t, unconditional_conditioning_extra, **kwargs
                    )
                else:
                    e_t_uncond_extra = None
            else:
                raise NotImplementedError

            if isinstance(e_t, tuple):
                e_t = e_t[0]
                extra_returned_data = e_t[1:]

            if isinstance(e_t_uncond, tuple):
                e_t_uncond = e_t_uncond[0]
            if isinstance(e_t_uncond_extra, tuple):
                e_t_uncond_extra = e_t_uncond_extra[0]

            # text cfg
            if (
                unconditional_guidance_scale_extra != 1.0
                and unconditional_conditioning_extra is not None
            ):
                e_t_cfg = (
                    e_t_uncond
                    + unconditional_guidance_scale * (e_t - e_t_uncond)
                    + unconditional_guidance_scale_extra * (e_t - e_t_uncond_extra)
                )
            else:
                e_t_cfg = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)

            if self.model.rescale_betas_zero_snr:
                e_t_cfg = rescale_noise_cfg(e_t_cfg, e_t, guidance_rescale=0.7)

        if self.model.parameterization == "v":
            e_t = self.model.predict_eps_from_z_and_v(x, t, e_t_cfg)
        else:
            e_t = e_t_cfg

        if score_corrector is not None:
            assert self.model.parameterization == "eps", "not implemented"
            e_t = score_corrector.modify_score(
                self.model, e_t, x, t, c, **corrector_kwargs
            )

        alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
        alphas_prev = (
            self.model.alphas_cumprod_prev
            if use_original_steps
            else self.ddim_alphas_prev
        )
        sqrt_one_minus_alphas = (
            self.model.sqrt_one_minus_alphas_cumprod
            if use_original_steps
            else self.ddim_sqrt_one_minus_alphas
        )
        sigmas = (
            self.model.ddim_sigmas_for_original_num_steps
            if use_original_steps
            else self.ddim_sigmas
        )
        # select parameters corresponding to the currently considered timestep

        if is_video:
            size = (b, 1, 1, 1, 1)
        else:
            size = (b, 1, 1, 1)
        a_t = torch.full(size, alphas[index], device=device)
        a_prev = torch.full(size, alphas_prev[index], device=device)
        sigma_t = torch.full(size, sigmas[index], device=device)
        sqrt_one_minus_at = torch.full(
            size, sqrt_one_minus_alphas[index], device=device
        )

        # current prediction for x_0
        if self.model.parameterization != "v":
            pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
        else:
            pred_x0 = self.model.predict_start_from_z_and_v(x, t, e_t_cfg)

        if self.model.use_dynamic_rescale:
            scale_t = torch.full(size, self.ddim_scale_arr[index], device=device)
            prev_scale_t = torch.full(
                size, self.ddim_scale_arr_prev[index], device=device
            )
            rescale = prev_scale_t / scale_t
            pred_x0 *= rescale

        if quantize_denoised:
            pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
        dir_xt = (1.0 - a_prev - sigma_t**2).sqrt() * e_t

        noise = noise_like(x.shape, device, repeat_noise)
        if self.model.bd_noise:
            noise_decor = self.model.bd(noise)
            noise_decor = (noise_decor - noise_decor.mean()) / (
                noise_decor.std() + 1e-5
            )
            noise_f = noise_decor[:, :, 0:1, :, :]
            noise = (
                np.sqrt(self.model.bd_ratio) * noise_decor[:, :, 1:]
                + np.sqrt(1 - self.model.bd_ratio) * noise_f
            )
            noise = torch.cat([noise_f, noise], dim=2)
        noise = sigma_t * noise * temperature

        if noise_dropout > 0.0:
            noise = torch.nn.functional.dropout(noise, p=noise_dropout)

        x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
        if with_extra_returned_data:
            return x_prev, pred_x0, extra_returned_data
        return x_prev, pred_x0