Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,920 Bytes
0b23d5a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
import copy
import numpy as np
import torch
from scipy.spatial.transform import Rotation as R
def get_opencv_from_blender(matrix_world, fov, image_size):
# convert matrix_world to opencv format extrinsics
opencv_world_to_cam = matrix_world.inverse()
opencv_world_to_cam[1, :] *= -1
opencv_world_to_cam[2, :] *= -1
R, T = opencv_world_to_cam[:3, :3], opencv_world_to_cam[:3, 3]
R, T = R.unsqueeze(0), T.unsqueeze(0)
# convert fov to opencv format intrinsics
focal = 1 / np.tan(fov / 2)
intrinsics = np.diag(np.array([focal, focal, 1])).astype(np.float32)
opencv_cam_matrix = torch.from_numpy(intrinsics).unsqueeze(0).float()
opencv_cam_matrix[:, :2, -1] += torch.tensor([image_size / 2, image_size / 2])
opencv_cam_matrix[:, [0, 1], [0, 1]] *= image_size / 2
return R, T, opencv_cam_matrix
def cartesian_to_spherical(xyz):
xy = xyz[:, 0] ** 2 + xyz[:, 1] ** 2
z = np.sqrt(xy + xyz[:, 2] ** 2)
# for elevation angle defined from z-axis down
theta = np.arctan2(np.sqrt(xy), xyz[:, 2])
azimuth = np.arctan2(xyz[:, 1], xyz[:, 0])
return np.stack([theta, azimuth, z], axis=-1)
def spherical_to_cartesian(spherical_coords):
# convert from spherical to cartesian coordinates
theta, azimuth, radius = spherical_coords.T
x = radius * np.sin(theta) * np.cos(azimuth)
y = radius * np.sin(theta) * np.sin(azimuth)
z = radius * np.cos(theta)
return np.stack([x, y, z], axis=-1)
def look_at(eye, center, up):
# Create a normalized direction vector from eye to center
f = np.array(center) - np.array(eye)
f /= np.linalg.norm(f)
# Create a normalized right vector
up_norm = np.array(up) / np.linalg.norm(up)
s = np.cross(f, up_norm)
s /= np.linalg.norm(s)
# Recompute the up vector
u = np.cross(s, f)
# Create rotation matrix R
R = np.array([[s[0], s[1], s[2]], [u[0], u[1], u[2]], [-f[0], -f[1], -f[2]]])
# Create translation vector T
T = -np.dot(R, np.array(eye))
return R, T
def get_blender_from_spherical(elevation, azimuth):
"""Generates blender camera from spherical coordinates."""
cartesian_coords = spherical_to_cartesian(np.array([[elevation, azimuth, 3.5]]))
# get camera rotation
center = np.array([0, 0, 0])
eye = cartesian_coords[0]
up = np.array([0, 0, 1])
R, T = look_at(eye, center, up)
R = R.T
T = -np.dot(R, T)
RT = np.concatenate([R, T.reshape(3, 1)], axis=-1)
blender_cam = torch.from_numpy(RT).float()
blender_cam = torch.cat([blender_cam, torch.tensor([[0, 0, 0, 1]])], dim=0)
print(blender_cam)
return blender_cam
def invert_pose(r, t):
r_inv = r.T
t_inv = -np.dot(r_inv, t)
return r_inv, t_inv
def transform_pose_sequence_to_relative(poses, as_z_up=False):
"""
poses: a sequence of 3*4 C2W camera pose matrices
as_z_up: output in z-up format. If False, the output is in y-up format
"""
r0, t0 = poses[0][:3, :3], poses[0][:3, 3]
# r0_inv, t0_inv = invert_pose(r0, t0)
r0_inv = r0.T
new_rt0 = np.hstack([np.eye(3, 3), np.zeros((3, 1))])
if as_z_up:
new_rt0 = c2w_y_up_to_z_up(new_rt0)
transformed_poses = [new_rt0]
for pose in poses[1:]:
r, t = pose[:3, :3], pose[:3, 3]
new_r = np.dot(r0_inv, r)
new_t = np.dot(r0_inv, t - t0)
new_rt = np.hstack([new_r, new_t[:, None]])
if as_z_up:
new_rt = c2w_y_up_to_z_up(new_rt)
transformed_poses.append(new_rt)
return transformed_poses
def c2w_y_up_to_z_up(c2w_3x4):
R_y_up_to_z_up = np.array([[1, 0, 0], [0, 0, -1], [0, 1, 0]])
R = c2w_3x4[:, :3]
t = c2w_3x4[:, 3]
R_z_up = R_y_up_to_z_up @ R
t_z_up = R_y_up_to_z_up @ t
T_z_up = np.hstack((R_z_up, t_z_up.reshape(3, 1)))
return T_z_up
def transform_pose_sequence_to_relative_w2c(poses):
new_rt_list = []
first_frame_rt = copy.deepcopy(poses[0])
first_frame_r_inv = first_frame_rt[:, :3].T
first_frame_t = first_frame_rt[:, -1]
for rt in poses:
rt[:, :3] = np.matmul(rt[:, :3], first_frame_r_inv)
rt[:, -1] = rt[:, -1] - np.matmul(rt[:, :3], first_frame_t)
new_rt_list.append(copy.deepcopy(rt))
return new_rt_list
def transform_pose_sequence_to_relative_c2w(poses):
first_frame_rt = poses[0]
first_frame_r_inv = first_frame_rt[:, :3].T
first_frame_t = first_frame_rt[:, -1]
rotations = poses[:, :, :3]
translations = poses[:, :, 3]
# Compute new rotations and translations in batch
new_rotations = torch.matmul(first_frame_r_inv, rotations)
new_translations = torch.matmul(
first_frame_r_inv, (translations - first_frame_t.unsqueeze(0)).unsqueeze(-1)
)
# Concatenate new rotations and translations
new_rt = torch.cat([new_rotations, new_translations], dim=-1)
return new_rt
def convert_w2c_between_c2w(poses):
rotations = poses[:, :, :3]
translations = poses[:, :, 3]
new_rotations = rotations.transpose(-1, -2)
new_translations = torch.matmul(-new_rotations, translations.unsqueeze(-1))
new_rt = torch.cat([new_rotations, new_translations], dim=-1)
return new_rt
def slerp(q1, q2, t):
"""
Performs spherical linear interpolation (SLERP) between two quaternions.
Args:
q1 (torch.Tensor): Start quaternion (4,).
q2 (torch.Tensor): End quaternion (4,).
t (float or torch.Tensor): Interpolation parameter in [0, 1].
Returns:
torch.Tensor: Interpolated quaternion (4,).
"""
q1 = q1 / torch.linalg.norm(q1) # Normalize q1
q2 = q2 / torch.linalg.norm(q2) # Normalize q2
dot = torch.dot(q1, q2)
# Ensure shortest path (flip q2 if needed)
if dot < 0.0:
q2 = -q2
dot = -dot
# Avoid numerical precision issues
dot = torch.clamp(dot, -1.0, 1.0)
theta = torch.acos(dot) # Angle between q1 and q2
if theta < 1e-6: # If very close, use linear interpolation
return (1 - t) * q1 + t * q2
sin_theta = torch.sin(theta)
return (torch.sin((1 - t) * theta) / sin_theta) * q1 + (
torch.sin(t * theta) / sin_theta
) * q2
def interpolate_camera_poses(c2w: torch.Tensor, factor: int) -> torch.Tensor:
"""
Interpolates a sequence of camera c2w poses to N times the length of the original sequence.
Args:
c2w (torch.Tensor): Input camera poses of shape (N, 3, 4).
factor (int): The upsampling factor (e.g., 2 for doubling the length).
Returns:
torch.Tensor: Interpolated camera poses of shape (N * factor, 3, 4).
"""
assert c2w.ndim == 3 and c2w.shape[1:] == (
3,
4,
), "Input tensor must have shape (N, 3, 4)."
assert factor > 1, "Upsampling factor must be greater than 1."
N = c2w.shape[0]
new_length = N * factor
# Extract rotations (R) and translations (T)
rotations = c2w[:, :3, :3] # Shape (N, 3, 3)
translations = c2w[:, :3, 3] # Shape (N, 3)
# Convert rotations to quaternions for interpolation
quaternions = torch.tensor(
R.from_matrix(rotations.numpy()).as_quat()
) # Shape (N, 4)
# Initialize interpolated quaternions and translations
interpolated_quats = []
interpolated_translations = []
# Perform interpolation
for i in range(N - 1):
# Start and end quaternions and translations for this segment
q1, q2 = quaternions[i], quaternions[i + 1]
t1, t2 = translations[i], translations[i + 1]
# Time steps for interpolation within this segment
t_values = torch.linspace(0, 1, factor, dtype=torch.float32)
# Interpolate quaternions using SLERP
for t in t_values:
interpolated_quats.append(slerp(q1, q2, t))
# Interpolate translations linearly
interp_t = t1 * (1 - t_values[:, None]) + t2 * t_values[:, None]
interpolated_translations.append(interp_t)
interpolated_quats.append(quaternions[0])
interpolated_translations.append(translations[0].unsqueeze(0))
# Add the last pose (end of sequence)
interpolated_quats.append(quaternions[-1])
interpolated_translations.append(translations[-1].unsqueeze(0)) # Add as 2D tensor
# Combine interpolated results
interpolated_quats = torch.stack(interpolated_quats, dim=0) # Shape (new_length, 4)
interpolated_translations = torch.cat(
interpolated_translations, dim=0
) # Shape (new_length, 3)
# Convert quaternions back to rotation matrices
interpolated_rotations = torch.tensor(
R.from_quat(interpolated_quats.numpy()).as_matrix()
) # Shape (new_length, 3, 3)
# Form final c2w matrix
interpolated_c2w = torch.zeros((new_length, 3, 4), dtype=torch.float32)
interpolated_c2w[:, :3, :3] = interpolated_rotations
interpolated_c2w[:, :3, 3] = interpolated_translations
return interpolated_c2w
|