diff --git a/.gitattributes b/.gitattributes
new file mode 100644
index 0000000000000000000000000000000000000000..a6344aac8c09253b3b630fb776ae94478aa0275b
--- /dev/null
+++ b/.gitattributes
@@ -0,0 +1,35 @@
+*.7z filter=lfs diff=lfs merge=lfs -text
+*.arrow filter=lfs diff=lfs merge=lfs -text
+*.bin filter=lfs diff=lfs merge=lfs -text
+*.bz2 filter=lfs diff=lfs merge=lfs -text
+*.ckpt filter=lfs diff=lfs merge=lfs -text
+*.ftz filter=lfs diff=lfs merge=lfs -text
+*.gz filter=lfs diff=lfs merge=lfs -text
+*.h5 filter=lfs diff=lfs merge=lfs -text
+*.joblib filter=lfs diff=lfs merge=lfs -text
+*.lfs.* filter=lfs diff=lfs merge=lfs -text
+*.mlmodel filter=lfs diff=lfs merge=lfs -text
+*.model filter=lfs diff=lfs merge=lfs -text
+*.msgpack filter=lfs diff=lfs merge=lfs -text
+*.npy filter=lfs diff=lfs merge=lfs -text
+*.npz filter=lfs diff=lfs merge=lfs -text
+*.onnx filter=lfs diff=lfs merge=lfs -text
+*.ot filter=lfs diff=lfs merge=lfs -text
+*.parquet filter=lfs diff=lfs merge=lfs -text
+*.pb filter=lfs diff=lfs merge=lfs -text
+*.pickle filter=lfs diff=lfs merge=lfs -text
+*.pkl filter=lfs diff=lfs merge=lfs -text
+*.pt filter=lfs diff=lfs merge=lfs -text
+*.pth filter=lfs diff=lfs merge=lfs -text
+*.rar filter=lfs diff=lfs merge=lfs -text
+*.safetensors filter=lfs diff=lfs merge=lfs -text
+saved_model/**/* filter=lfs diff=lfs merge=lfs -text
+*.tar.* filter=lfs diff=lfs merge=lfs -text
+*.tar filter=lfs diff=lfs merge=lfs -text
+*.tflite filter=lfs diff=lfs merge=lfs -text
+*.tgz filter=lfs diff=lfs merge=lfs -text
+*.wasm filter=lfs diff=lfs merge=lfs -text
+*.xz filter=lfs diff=lfs merge=lfs -text
+*.zip filter=lfs diff=lfs merge=lfs -text
+*.zst filter=lfs diff=lfs merge=lfs -text
+*tfevents* filter=lfs diff=lfs merge=lfs -text
diff --git a/.gitignore b/.gitignore
new file mode 100644
index 0000000000000000000000000000000000000000..fb4002e5c74fad144ac64cfb3c4010b2152a8152
--- /dev/null
+++ b/.gitignore
@@ -0,0 +1,6 @@
+# main/evaluation
+.vscode/
+
+*.pyc
+gradio_temp
+*.pth
\ No newline at end of file
diff --git a/LICENSE b/LICENSE
new file mode 100644
index 0000000000000000000000000000000000000000..261eeb9e9f8b2b4b0d119366dda99c6fd7d35c64
--- /dev/null
+++ b/LICENSE
@@ -0,0 +1,201 @@
+ Apache License
+ Version 2.0, January 2004
+ http://www.apache.org/licenses/
+
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
+
+ 1. Definitions.
+
+ "License" shall mean the terms and conditions for use, reproduction,
+ and distribution as defined by Sections 1 through 9 of this document.
+
+ "Licensor" shall mean the copyright owner or entity authorized by
+ the copyright owner that is granting the License.
+
+ "Legal Entity" shall mean the union of the acting entity and all
+ other entities that control, are controlled by, or are under common
+ control with that entity. For the purposes of this definition,
+ "control" means (i) the power, direct or indirect, to cause the
+ direction or management of such entity, whether by contract or
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
+ outstanding shares, or (iii) beneficial ownership of such entity.
+
+ "You" (or "Your") shall mean an individual or Legal Entity
+ exercising permissions granted by this License.
+
+ "Source" form shall mean the preferred form for making modifications,
+ including but not limited to software source code, documentation
+ source, and configuration files.
+
+ "Object" form shall mean any form resulting from mechanical
+ transformation or translation of a Source form, including but
+ not limited to compiled object code, generated documentation,
+ and conversions to other media types.
+
+ "Work" shall mean the work of authorship, whether in Source or
+ Object form, made available under the License, as indicated by a
+ copyright notice that is included in or attached to the work
+ (an example is provided in the Appendix below).
+
+ "Derivative Works" shall mean any work, whether in Source or Object
+ form, that is based on (or derived from) the Work and for which the
+ editorial revisions, annotations, elaborations, or other modifications
+ represent, as a whole, an original work of authorship. For the purposes
+ of this License, Derivative Works shall not include works that remain
+ separable from, or merely link (or bind by name) to the interfaces of,
+ the Work and Derivative Works thereof.
+
+ "Contribution" shall mean any work of authorship, including
+ the original version of the Work and any modifications or additions
+ to that Work or Derivative Works thereof, that is intentionally
+ submitted to Licensor for inclusion in the Work by the copyright owner
+ or by an individual or Legal Entity authorized to submit on behalf of
+ the copyright owner. For the purposes of this definition, "submitted"
+ means any form of electronic, verbal, or written communication sent
+ to the Licensor or its representatives, including but not limited to
+ communication on electronic mailing lists, source code control systems,
+ and issue tracking systems that are managed by, or on behalf of, the
+ Licensor for the purpose of discussing and improving the Work, but
+ excluding communication that is conspicuously marked or otherwise
+ designated in writing by the copyright owner as "Not a Contribution."
+
+ "Contributor" shall mean Licensor and any individual or Legal Entity
+ on behalf of whom a Contribution has been received by Licensor and
+ subsequently incorporated within the Work.
+
+ 2. Grant of Copyright License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ copyright license to reproduce, prepare Derivative Works of,
+ publicly display, publicly perform, sublicense, and distribute the
+ Work and such Derivative Works in Source or Object form.
+
+ 3. Grant of Patent License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ (except as stated in this section) patent license to make, have made,
+ use, offer to sell, sell, import, and otherwise transfer the Work,
+ where such license applies only to those patent claims licensable
+ by such Contributor that are necessarily infringed by their
+ Contribution(s) alone or by combination of their Contribution(s)
+ with the Work to which such Contribution(s) was submitted. If You
+ institute patent litigation against any entity (including a
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
+ or a Contribution incorporated within the Work constitutes direct
+ or contributory patent infringement, then any patent licenses
+ granted to You under this License for that Work shall terminate
+ as of the date such litigation is filed.
+
+ 4. Redistribution. You may reproduce and distribute copies of the
+ Work or Derivative Works thereof in any medium, with or without
+ modifications, and in Source or Object form, provided that You
+ meet the following conditions:
+
+ (a) You must give any other recipients of the Work or
+ Derivative Works a copy of this License; and
+
+ (b) You must cause any modified files to carry prominent notices
+ stating that You changed the files; and
+
+ (c) You must retain, in the Source form of any Derivative Works
+ that You distribute, all copyright, patent, trademark, and
+ attribution notices from the Source form of the Work,
+ excluding those notices that do not pertain to any part of
+ the Derivative Works; and
+
+ (d) If the Work includes a "NOTICE" text file as part of its
+ distribution, then any Derivative Works that You distribute must
+ include a readable copy of the attribution notices contained
+ within such NOTICE file, excluding those notices that do not
+ pertain to any part of the Derivative Works, in at least one
+ of the following places: within a NOTICE text file distributed
+ as part of the Derivative Works; within the Source form or
+ documentation, if provided along with the Derivative Works; or,
+ within a display generated by the Derivative Works, if and
+ wherever such third-party notices normally appear. The contents
+ of the NOTICE file are for informational purposes only and
+ do not modify the License. You may add Your own attribution
+ notices within Derivative Works that You distribute, alongside
+ or as an addendum to the NOTICE text from the Work, provided
+ that such additional attribution notices cannot be construed
+ as modifying the License.
+
+ You may add Your own copyright statement to Your modifications and
+ may provide additional or different license terms and conditions
+ for use, reproduction, or distribution of Your modifications, or
+ for any such Derivative Works as a whole, provided Your use,
+ reproduction, and distribution of the Work otherwise complies with
+ the conditions stated in this License.
+
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
+ any Contribution intentionally submitted for inclusion in the Work
+ by You to the Licensor shall be under the terms and conditions of
+ this License, without any additional terms or conditions.
+ Notwithstanding the above, nothing herein shall supersede or modify
+ the terms of any separate license agreement you may have executed
+ with Licensor regarding such Contributions.
+
+ 6. Trademarks. This License does not grant permission to use the trade
+ names, trademarks, service marks, or product names of the Licensor,
+ except as required for reasonable and customary use in describing the
+ origin of the Work and reproducing the content of the NOTICE file.
+
+ 7. Disclaimer of Warranty. Unless required by applicable law or
+ agreed to in writing, Licensor provides the Work (and each
+ Contributor provides its Contributions) on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
+ implied, including, without limitation, any warranties or conditions
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
+ PARTICULAR PURPOSE. You are solely responsible for determining the
+ appropriateness of using or redistributing the Work and assume any
+ risks associated with Your exercise of permissions under this License.
+
+ 8. Limitation of Liability. In no event and under no legal theory,
+ whether in tort (including negligence), contract, or otherwise,
+ unless required by applicable law (such as deliberate and grossly
+ negligent acts) or agreed to in writing, shall any Contributor be
+ liable to You for damages, including any direct, indirect, special,
+ incidental, or consequential damages of any character arising as a
+ result of this License or out of the use or inability to use the
+ Work (including but not limited to damages for loss of goodwill,
+ work stoppage, computer failure or malfunction, or any and all
+ other commercial damages or losses), even if such Contributor
+ has been advised of the possibility of such damages.
+
+ 9. Accepting Warranty or Additional Liability. While redistributing
+ the Work or Derivative Works thereof, You may choose to offer,
+ and charge a fee for, acceptance of support, warranty, indemnity,
+ or other liability obligations and/or rights consistent with this
+ License. However, in accepting such obligations, You may act only
+ on Your own behalf and on Your sole responsibility, not on behalf
+ of any other Contributor, and only if You agree to indemnify,
+ defend, and hold each Contributor harmless for any liability
+ incurred by, or claims asserted against, such Contributor by reason
+ of your accepting any such warranty or additional liability.
+
+ END OF TERMS AND CONDITIONS
+
+ APPENDIX: How to apply the Apache License to your work.
+
+ To apply the Apache License to your work, attach the following
+ boilerplate notice, with the fields enclosed by brackets "[]"
+ replaced with your own identifying information. (Don't include
+ the brackets!) The text should be enclosed in the appropriate
+ comment syntax for the file format. We also recommend that a
+ file or class name and description of purpose be included on the
+ same "printed page" as the copyright notice for easier
+ identification within third-party archives.
+
+ Copyright [yyyy] [name of copyright owner]
+
+ Licensed under the Apache License, Version 2.0 (the "License");
+ you may not use this file except in compliance with the License.
+ You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+ Unless required by applicable law or agreed to in writing, software
+ distributed under the License is distributed on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ See the License for the specific language governing permissions and
+ limitations under the License.
diff --git a/README.md b/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..0eeeb5195d2acd815cb8aaebdffe39689ed01f83
--- /dev/null
+++ b/README.md
@@ -0,0 +1,83 @@
+
+
+
+
MotionCtrl: A Unified and Flexible
+ Motion Controller
+ for Video Generation
+
+
+
+[](https://wzhouxiff.github.io/projects/MotionCtrl/assets/paper/MotionCtrl.pdf) [](https://arxiv.org/pdf/2312.03641.pdf) [
+](https://wzhouxiff.github.io/projects/MotionCtrl/) []()
+
+[Zhouxia Wang](https://vvictoryuki.github.io/website/)1,2, [Ziyang Yuan](https://github.com/jiangyzy)1,4, [Xintao Wang](https://xinntao.github.io/)1,3, [Tianshui Chen](http://tianshuichen.com/)6, [Menghan Xia](https://menghanxia.github.io/)3, [Ping Luo](http://luoping.me/)2,5, [Ying Shan](https://scholar.google.com/citations?hl=zh-CN&user=4oXBp9UAAAAJ)1,3
+
+1 ARC Lab, Tencent PCG, 2 The University of Hong Kong, 3 Tencent AI Lab, 4 Tsinghua University, 5 Shanghai AI Laboratory, 6 Guangdong University of Technology
+
+
+
+
+
+
+Our proposed MotionCtrl is capable of independently controlling the complex camera motion and object motion of the generated videos, with only a unified model.
+There are some results attained with MotionCtrl and more results are showcased in our [Project Page](https://wzhouxiff.github.io/projects/MotionCtrl/).
+
+
+
+
+
+
+## Updating
+- [x] Release MotionCtrl depolyed on *LVDM/VideoCrafter*
+- [ ] Gradio Demo Available
+
+
+
+## Inference
+
+1. Download the weights of MotionCtrl from [weipan](https://drive.weixin.qq.com/s?k=AJEAIQdfAAogLtIAPh) to `./checkpoints`.
+2. Go into `configs/inference/run.sh` and set `condtype` as 'camera_motion', 'object_motion', or 'both'.
+- `condtype=camera_motion` means only control the **camera motion** in the generated video.
+- `condtype=object_motion` means only control the **object motion** in the generated video.
+- `condtype=both` means control the camera motion and object motion in the generated video **simultaneously**.
+3. sh configs/inference/run.sh
+
+## Citation
+If you make use of our work, please cite our paper.
+```bibtex
+@inproceedings{wang2023motionctrl,
+ title={MotionCtrl: A Unified and Flexible Motion Controller for Video Generation},
+ author={Wang, Zhouxia and Yuan, Ziyang and Wang, Xintao and Chen, Tianshui and Xia, Menghan and Luo, Ping and Shan, Yin},
+ booktitle={arXiv preprint arXiv:2312.03641},
+ year={2023}
+}
+```
+
diff --git a/app.py b/app.py
new file mode 100644
index 0000000000000000000000000000000000000000..90185aba6de58391d227daaeea9fe8e9ccd568f0
--- /dev/null
+++ b/app.py
@@ -0,0 +1,1079 @@
+import argparse
+import os
+import tempfile
+from functools import partial
+
+import cv2
+import gradio as gr
+import imageio
+import numpy as np
+import torch
+import torchvision
+from omegaconf import OmegaConf
+from PIL import Image
+from pytorch_lightning import seed_everything
+
+from gradio_utils.camera_utils import CAMERA_MOTION_MODE, process_camera
+from gradio_utils.traj_utils import (OBJECT_MOTION_MODE, get_provided_traj,
+ process_points, process_traj)
+from gradio_utils.utils import vis_camera
+from lvdm.models.samplers.ddim import DDIMSampler
+from main.evaluation.motionctrl_inference import (DEFAULT_NEGATIVE_PROMPT,
+ load_model_checkpoint,
+ post_prompt)
+from utils.utils import instantiate_from_config
+
+os.environ['KMP_DUPLICATE_LIB_OK']='True'
+
+
+#### Description ####
+title = r"""MotionCtrl: A Unified and Flexible Motion Controller for Video Generation
"""
+
+description = r"""
+Official Gradio demo for MotionCtrl: A Unified and Flexible Motion Controller for Video Generation.
+🔥 MotionCtrl is capable of independently and flexibly controling the camera motion and object motion of a generated video, with only a unified model.
+🤗 Try to control the motion of the generated videos yourself!
+❗❗❗ Please note that current version of **MotionCtrl** is deployed on **LVDM/VideoCrafter**. The versions that depolyed on **AnimateDiff** and **SVD** will be released soon.
+"""
+article = r"""
+If MotionCtrl is helpful, please help to ⭐ the Github Repo. Thanks!
+[](https://github.com/TencentARC/MotionCtrl)
+
+---
+
+📝 **Citation**
+
+If our work is useful for your research, please consider citing:
+```bibtex
+@inproceedings{wang2023motionctrl,
+ title={MotionCtrl: A Unified and Flexible Motion Controller for Video Generation},
+ author={Wang, Zhouxia and Yuan, Ziyang and Wang, Xintao and Chen, Tianshui and Xia, Menghan and Luo, Ping and Shan, Yin},
+ booktitle={arXiv preprint arXiv:2312.03641},
+ year={2023}
+}
+```
+
+📧 **Contact**
+
+If you have any questions, please feel free to reach me out at wzhoux@connect.hku.hk.
+
+"""
+css = """
+.gradio-container {width: 85% !important}
+.gr-monochrome-group {border-radius: 5px !important; border: revert-layer !important; border-width: 2px !important; color: black !important;}
+span.svelte-s1r2yt {font-size: 17px !important; font-weight: bold !important; color: #d30f2f !important;}
+button {border-radius: 8px !important;}
+.add_button {background-color: #4CAF50 !important;}
+.remove_button {background-color: #f44336 !important;}
+.clear_button {background-color: gray !important;}
+.mask_button_group {gap: 10px !important;}
+.video {height: 300px !important;}
+.image {height: 300px !important;}
+.video .wrap.svelte-lcpz3o {display: flex !important; align-items: center !important; justify-content: center !important;}
+.video .wrap.svelte-lcpz3o > :first-child {height: 100% !important;}
+.margin_center {width: 50% !important; margin: auto !important;}
+.jc_center {justify-content: center !important;}
+"""
+
+
+T_base = [
+ [1.,0.,0.], ## W2C x 的正方向: 相机朝左 left
+ [-1.,0.,0.], ## W2C x 的负方向: 相机朝右 right
+ [0., 1., 0.], ## W2C y 的正方向: 相机朝上 up
+ [0.,-1.,0.], ## W2C y 的负方向: 相机朝下 down
+ [0.,0.,1.], ## W2C z 的正方向: 相机往前 zoom out
+ [0.,0.,-1.], ## W2C z 的负方向: 相机往前 zoom in
+ ]
+radius = 1
+n = 16
+# step =
+look_at = np.array([0, 0, 0.8]).reshape(3,1)
+# look_at = np.array([0, 0, 0.2]).reshape(3,1)
+
+T_list = []
+base_R = np.array([[1., 0., 0.],
+ [0., 1., 0.],
+ [0., 0., 1.]])
+res = []
+res_forsave = []
+T_range = 1.8
+
+
+
+for i in range(0, 16):
+ # theta = (1)*np.pi*i/n
+
+ R = base_R[:,:3]
+ T = np.array([0.,0.,1.]).reshape(3,1) * (i/n)*2
+ RT = np.concatenate([R,T], axis=1)
+ res.append(RT)
+
+fig = vis_camera(res)
+
+# MODE = ["camera motion control", "object motion control", "camera + object motion control"]
+MODE = ["control camera poses", "control object trajectory", "control both camera and object motion"]
+BASE_MODEL = ['LVDM/VideoCrafter', 'AnimateDiff', 'SVD']
+
+
+traj_list = []
+camera_dict = {
+ "motion":[],
+ "mode": "Customized Mode 1: First A then B", # "First A then B", "Both A and B", "Custom"
+ "speed": 1.0,
+ "complex": None
+ }
+
+def fn_vis_camera(info_mode):
+ global camera_dict
+ RT = process_camera(camera_dict) # [t, 3, 4]
+ if camera_dict['complex'] is not None:
+ # rescale T to [-2,2]
+ for i in range(3):
+ min_T = np.min(RT[:,i,-1])
+ max_T = np.max(RT[:,i,-1])
+ if min_T < -2 or max_T > 2:
+ RT[:,i,-1] = RT[:,i,-1] - min_T
+ RT[:,i,-1] = RT[:,i,-1] / (np.max(RT[:,:,-1]) + 1e-6)
+ RT[:,i,-1] = RT[:,i,-1] * 4
+ RT[:,i,-1] = RT[:,i,-1] - 2
+
+ fig = vis_camera(RT)
+
+ if info_mode == MODE[0]:
+ vis_step3_prompt_generate = True
+ vis_prompt = True
+ vis_num_samples = True
+ vis_seed = True
+ vis_start = True
+ vis_gen_video = True
+
+ vis_object_mode = False
+ vis_object_info = False
+
+ else:
+ vis_step3_prompt_generate = False
+ vis_prompt = False
+ vis_num_samples = False
+ vis_seed = False
+ vis_start = False
+ vis_gen_video = False
+
+ vis_object_mode = True
+ vis_object_info = True
+
+ return fig, \
+ gr.update(visible=vis_object_mode), \
+ gr.update(visible=vis_object_info), \
+ gr.update(visible=vis_step3_prompt_generate), \
+ gr.update(visible=vis_prompt), \
+ gr.update(visible=vis_num_samples), \
+ gr.update(visible=vis_seed), \
+ gr.update(visible=vis_start), \
+ gr.update(visible=vis_gen_video, value=None)
+
+def fn_vis_traj():
+ global traj_list
+ xy_range = 1024
+ points = process_points(traj_list)
+ imgs = []
+ for idx in range(16):
+ bg_img = np.ones((1024, 1024, 3), dtype=np.uint8) * 255
+ for i in range(15):
+ p = points[i]
+ p1 = points[i+1]
+ cv2.line(bg_img, p, p1, (255, 0, 0), 2)
+
+ if i == idx:
+ cv2.circle(bg_img, p, 2, (0, 255, 0), 20)
+
+ if idx==(15):
+ cv2.circle(bg_img, points[-1], 2, (0, 255, 0), 20)
+
+ imgs.append(bg_img.astype(np.uint8))
+
+ # size = (512, 512)
+ fps = 10
+ path = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False).name
+ writer = imageio.get_writer(path, format='mp4', mode='I', fps=fps)
+ for img in imgs:
+ writer.append_data(img)
+
+ writer.close()
+
+ vis_step3_prompt_generate = True
+ vis_prompt = True
+ vis_num_samples = True
+ vis_seed = True
+ vis_start = True
+ vis_gen_video = True
+ return path, gr.update(visible=vis_step3_prompt_generate), \
+ gr.update(visible=vis_prompt), \
+ gr.update(visible=vis_num_samples), \
+ gr.update(visible=vis_seed), \
+ gr.update(visible=vis_start), \
+ gr.update(visible=vis_gen_video, value=None)
+
+def display_camera_info(camera_dict, camera_mode=None):
+ if camera_dict['complex'] is not None:
+ res = f"complex : {camera_dict['complex']}. "
+ else:
+ res = ""
+ res += f"motion : {[_ for _ in camera_dict['motion']]}. "
+ res += f"speed : {camera_dict['speed']}. "
+ if camera_mode == 'Custom Camera Poses':
+ res += f"mode : {camera_dict['mode']}. "
+ return res
+
+def add_traj_point(evt: gr.SelectData, ):
+ global traj_list
+ traj_list.append(evt.index)
+ traj_str = [f"{traj}" for traj in traj_list]
+ return ", ".join(traj_str)
+
+def add_provided_traj(traj_name):
+ global traj_list
+ traj_list = get_provided_traj(traj_name)
+ traj_str = [f"{traj}" for traj in traj_list]
+ return ", ".join(traj_str)
+
+def add_camera_motion(camera_motion, camera_mode):
+ global camera_dict
+ if camera_dict['complex'] is not None:
+ camera_dict['complex'] = None
+ if camera_mode == 'Custom Camera Poses' and len(camera_dict['motion']) <2:
+ camera_dict['motion'].append(camera_motion)
+ else:
+ camera_dict['motion']=[camera_motion]
+
+ return display_camera_info(camera_dict, camera_mode)
+
+def add_complex_camera_motion(camera_motion):
+ global camera_dict
+ camera_dict['complex']=camera_motion
+ return display_camera_info(camera_dict)
+
+def change_camera_mode(combine_type, camera_mode):
+ global camera_dict
+ camera_dict['mode'] = combine_type
+
+ return display_camera_info(camera_dict, camera_mode)
+
+def change_camera_speed(camera_speed):
+ global camera_dict
+ camera_dict['speed'] = camera_speed
+ return display_camera_info(camera_dict)
+
+def reset_camera():
+ global camera_dict
+ camera_dict = {
+ "motion":[],
+ "mode": "Customized Mode 1: First A then B",
+ "speed": 1.0,
+ "complex": None
+ }
+ return display_camera_info(camera_dict)
+
+
+def fn_traj_droplast():
+ global traj_list
+
+ if traj_list:
+ traj_list.pop()
+
+ if traj_list:
+ traj_str = [f"{traj}" for traj in traj_list]
+ return ", ".join(traj_str)
+ else:
+ return "Click to specify trajectory"
+
+def fn_traj_reset():
+ global traj_list
+ traj_list = []
+ return "Click to specify trajectory"
+
+###########################################
+model_path='./checkpoints/motionctrl.pth'
+config_path='./configs/inference/config_both.yaml'
+
+config = OmegaConf.load(config_path)
+model_config = config.pop("model", OmegaConf.create())
+model = instantiate_from_config(model_config)
+model = model.cuda()
+
+model = load_model_checkpoint(model, model_path)
+model.eval()
+
+
+def model_run(prompts, infer_mode, seed, n_samples):
+ global traj_list
+ global camera_dict
+
+ RT = process_camera(camera_dict).reshape(-1,12)
+ traj_flow = process_traj(traj_list).transpose(3,0,1,2)
+ print(prompts)
+ print(RT.shape)
+ print(traj_flow.shape)
+
+ noise_shape = [1, 4, 16, 32, 32]
+ unconditional_guidance_scale = 7.5
+ unconditional_guidance_scale_temporal = None
+ # n_samples = 1
+ ddim_steps= 50
+ ddim_eta=1.0
+ cond_T=800
+
+ if n_samples < 1:
+ n_samples = 1
+ if n_samples > 4:
+ n_samples = 4
+
+ seed_everything(seed)
+
+ if infer_mode == MODE[0]:
+ camera_poses = RT
+ camera_poses = torch.tensor(camera_poses).float().cuda()
+ camera_poses = camera_poses.unsqueeze(0)
+ trajs = None
+ elif infer_mode == MODE[1]:
+ trajs = traj_flow
+ trajs = torch.tensor(trajs).float().cuda()
+ trajs = trajs.unsqueeze(0)
+ camera_poses = None
+ else:
+ camera_poses = RT
+ trajs = traj_flow
+ camera_poses = torch.tensor(camera_poses).float().cuda()
+ trajs = torch.tensor(trajs).float().cuda()
+ camera_poses = camera_poses.unsqueeze(0)
+ trajs = trajs.unsqueeze(0)
+
+ ddim_sampler = DDIMSampler(model)
+ batch_size = noise_shape[0]
+ ## get condition embeddings (support single prompt only)
+ if isinstance(prompts, str):
+ prompts = [prompts]
+
+ for i in range(len(prompts)):
+ prompts[i] = f'{prompts[i]}, {post_prompt}'
+
+ cond = model.get_learned_conditioning(prompts)
+ if camera_poses is not None:
+ RT = camera_poses[..., None]
+ else:
+ RT = None
+
+ if trajs is not None:
+ traj_features = model.get_traj_features(trajs)
+ else:
+ traj_features = None
+
+ if unconditional_guidance_scale != 1.0:
+ # prompts = batch_size * [""]
+ prompts = batch_size * [DEFAULT_NEGATIVE_PROMPT]
+ uc = model.get_learned_conditioning(prompts)
+ if traj_features is not None:
+ un_motion = model.get_traj_features(torch.zeros_like(trajs))
+ else:
+ un_motion = None
+ uc = {"features_adapter": un_motion, "uc": uc}
+ else:
+ uc = None
+
+ batch_variants = []
+ for _ in range(n_samples):
+ if ddim_sampler is not None:
+ samples, _ = ddim_sampler.sample(S=ddim_steps,
+ conditioning=cond,
+ batch_size=noise_shape[0],
+ shape=noise_shape[1:],
+ verbose=False,
+ unconditional_guidance_scale=unconditional_guidance_scale,
+ unconditional_conditioning=uc,
+ eta=ddim_eta,
+ temporal_length=noise_shape[2],
+ conditional_guidance_scale_temporal=unconditional_guidance_scale_temporal,
+ features_adapter=traj_features,
+ pose_emb=RT,
+ cond_T=cond_T
+ )
+ ## reconstruct from latent to pixel space
+ batch_images = model.decode_first_stage(samples)
+ batch_variants.append(batch_images)
+ ## variants, batch, c, t, h, w
+ batch_variants = torch.stack(batch_variants, dim=1)
+ batch_variants = batch_variants[0]
+
+ # file_path = save_results(batch_variants, "MotionCtrl", "gradio_temp", fps=10)
+ file_path = save_results(batch_variants, fps=10)
+ print(file_path)
+
+ return gr.update(value=file_path, width=256*n_samples, height=256)
+
+ # return file_path
+
+def save_results(video, fps=10):
+
+ # b,c,t,h,w
+ video = video.detach().cpu()
+ video = torch.clamp(video.float(), -1., 1.)
+ n = video.shape[0]
+ video = video.permute(2, 0, 1, 3, 4) # t,n,c,h,w
+ frame_grids = [torchvision.utils.make_grid(framesheet, nrow=int(n)) for framesheet in video] #[3, 1*h, n*w]
+ grid = torch.stack(frame_grids, dim=0) # stack in temporal dim [t, 3, n*h, w]
+ grid = (grid + 1.0) / 2.0
+ grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1) # [t, h, w*n, 3]
+
+ path = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False).name
+
+ writer = imageio.get_writer(path, format='mp4', mode='I', fps=fps)
+ for i in range(grid.shape[0]):
+ img = grid[i].numpy()
+ writer.append_data(img)
+
+ writer.close()
+
+ return path
+
+def visualized_step2(infer_mode):
+
+ # reset
+ reset_camera()
+ fn_traj_reset()
+
+ # camera motion control
+ vis_basic_camera_motion = False
+ vis_basic_camera_motion_des = False
+ vis_custom_camera_motion = False
+ vis_custom_run_status = False
+ vis_complex_camera_motion = False
+ vis_complex_camera_motion_des = False
+ vis_U = False
+ vis_D = False
+ vis_L = False
+ vis_R = False
+ vis_I = False
+ vis_O = False
+ vis_ACW = False
+ vis_CW = False
+ vis_combine1 = False
+ vis_combine2 = False
+ vis_speed = False
+
+ vis_Pose_1, vis_Pose_2, vis_Pose_3, vis_Pose_4 = False, False, False, False
+ vis_Pose_5, vis_Pose_6, vis_Pose_7, vis_Pose_8 = False, False, False, False
+
+ vis_camera_args = False
+ vis_camera_reset = False
+ vis_camera_vis = False
+ vis_vis_camera = False
+
+ # object motion control
+ vis_provided_traj = False
+ vis_provided_traj_des = False
+ vis_draw_yourself = False
+ vis_draw_run_status = False
+
+ vis_traj_1, vis_traj_2, vis_traj_3, vis_traj_4 = False, False, False, False
+ vis_traj_5, vis_traj_6, vis_traj_7, vis_traj_8 = False, False, False, False
+
+ traj_args = False
+ traj_droplast, traj_reset = False, False
+ traj_vis = False
+ traj_input, vis_traj = False, False
+
+
+ # generate video
+ vis_step3_prompt_generate = False
+ vis_prompt = False
+ vis_num_samples = False
+ vis_seed = False
+ vis_start = False
+ vis_gen_video = False
+
+ if infer_mode == MODE[0]:
+ vis_step2_camera_motion = True
+ vis_step2_camera_motion_des = True
+ vis_camera_mode = True
+ vis_camera_info = True
+
+ vis_step2_object_motion = False
+ vis_step2_object_motion_des = False
+ vis_traj_mode = False
+ vis_traj_info = False
+
+ step2_camera_object_motion = False
+ step2_camera_object_motion_des = False
+
+ elif infer_mode == MODE[1]:
+ vis_step2_camera_motion = False
+ vis_step2_camera_motion_des = False
+ vis_camera_mode = False
+ vis_camera_info = False
+
+ vis_step2_object_motion = True
+ vis_step2_object_motion_des = True
+ vis_traj_mode = True
+ vis_traj_info = True
+
+ step2_camera_object_motion = False
+ step2_camera_object_motion_des = False
+ else: #infer_mode == MODE[2]:
+ vis_step2_camera_motion = False
+ vis_step2_camera_motion_des = False
+ vis_camera_mode = False
+ vis_camera_info = False
+
+ vis_step2_object_motion = False
+ vis_step2_object_motion_des = False
+ vis_traj_mode = False
+ vis_traj_info = False
+
+ step2_camera_object_motion = True
+ step2_camera_object_motion_des = True
+
+ vis_basic_camera_motion = True
+ vis_basic_camera_motion_des = True
+ vis_U = True
+ vis_D = True
+ vis_L = True
+ vis_R = True
+ vis_I = True
+ vis_O = True
+ vis_ACW = True
+ vis_CW = True
+ vis_speed = True
+
+ vis_camera_args = True
+ vis_camera_reset = True
+ vis_camera_vis = True
+ vis_vis_camera = True
+
+
+ return gr.update(visible=vis_step2_camera_motion), \
+ gr.update(visible=vis_step2_camera_motion_des), \
+ gr.update(visible=vis_camera_mode), \
+ gr.update(visible=vis_camera_info), \
+ gr.update(visible=vis_basic_camera_motion), \
+ gr.update(visible=vis_basic_camera_motion_des), \
+ gr.update(visible=vis_custom_camera_motion), \
+ gr.update(visible=vis_custom_run_status), \
+ gr.update(visible=vis_complex_camera_motion), \
+ gr.update(visible=vis_complex_camera_motion_des), \
+ gr.update(visible=vis_U), gr.update(visible=vis_D), gr.update(visible=vis_L), gr.update(visible=vis_R), \
+ gr.update(visible=vis_I), gr.update(visible=vis_O), gr.update(visible=vis_ACW), gr.update(visible=vis_CW), \
+ gr.update(visible=vis_combine1), gr.update(visible=vis_combine2), \
+ gr.update(visible=vis_speed), \
+ gr.update(visible=vis_Pose_1), gr.update(visible=vis_Pose_2), gr.update(visible=vis_Pose_3), gr.update(visible=vis_Pose_4), \
+ gr.update(visible=vis_Pose_5), gr.update(visible=vis_Pose_6), gr.update(visible=vis_Pose_7), gr.update(visible=vis_Pose_8), \
+ gr.update(visible=vis_camera_args, value=None), \
+ gr.update(visible=vis_camera_reset), gr.update(visible=vis_camera_vis), \
+ gr.update(visible=vis_vis_camera, value=None), \
+ gr.update(visible=vis_step2_object_motion), \
+ gr.update(visible=vis_step2_object_motion_des), \
+ gr.update(visible=vis_traj_mode), \
+ gr.update(visible=vis_traj_info), \
+ gr.update(visible=vis_provided_traj), \
+ gr.update(visible=vis_provided_traj_des), \
+ gr.update(visible=vis_draw_yourself), \
+ gr.update(visible=vis_draw_run_status), \
+ gr.update(visible=vis_traj_1), gr.update(visible=vis_traj_2), gr.update(visible=vis_traj_3), gr.update(visible=vis_traj_4), \
+ gr.update(visible=vis_traj_5), gr.update(visible=vis_traj_6), gr.update(visible=vis_traj_7), gr.update(visible=vis_traj_8), \
+ gr.update(visible=traj_args), \
+ gr.update(visible=traj_droplast), gr.update(visible=traj_reset), \
+ gr.update(visible=traj_vis), \
+ gr.update(visible=traj_input), gr.update(visible=vis_traj, value=None), \
+ gr.update(visible=step2_camera_object_motion), \
+ gr.update(visible=step2_camera_object_motion_des), \
+ gr.update(visible=vis_step3_prompt_generate), \
+ gr.update(visible=vis_prompt), \
+ gr.update(visible=vis_num_samples), \
+ gr.update(visible=vis_seed), \
+ gr.update(visible=vis_start), \
+ gr.update(visible=vis_gen_video)
+
+def visualized_camera_poses(step2_camera_motion):
+ reset_camera()
+
+ # generate video
+ vis_step3_prompt_generate = False
+ vis_prompt = False
+ vis_num_samples = False
+ vis_seed = False
+ vis_start = False
+ vis_gen_video = False
+
+ if step2_camera_motion == CAMERA_MOTION_MODE[0]:
+ vis_basic_camera_motion = True
+ vis_basic_camera_motion_des = True
+ vis_custom_camera_motion = False
+ vis_custom_run_status = False
+ vis_complex_camera_motion = False
+ vis_complex_camera_motion_des = False
+ vis_U = True
+ vis_D = True
+ vis_L = True
+ vis_R = True
+ vis_I = True
+ vis_O = True
+ vis_ACW = True
+ vis_CW = True
+ vis_combine1 = False
+ vis_combine2 = False
+ vis_speed = True
+
+ vis_Pose_1, vis_Pose_2, vis_Pose_3, vis_Pose_4 = False, False, False, False
+ vis_Pose_5, vis_Pose_6, vis_Pose_7, vis_Pose_8 = False, False, False, False
+
+ elif step2_camera_motion == CAMERA_MOTION_MODE[1]:
+ vis_basic_camera_motion = False
+ vis_basic_camera_motion_des = False
+ vis_custom_camera_motion = False
+ vis_custom_run_status = False
+ vis_complex_camera_motion = True
+ vis_complex_camera_motion_des = True
+ vis_U = False
+ vis_D = False
+ vis_L = False
+ vis_R = False
+ vis_I = False
+ vis_O = False
+ vis_ACW = False
+ vis_CW = False
+ vis_combine1 = False
+ vis_combine2 = False
+ vis_speed = False
+
+ vis_Pose_1, vis_Pose_2, vis_Pose_3, vis_Pose_4 = True, True, True, True
+ vis_Pose_5, vis_Pose_6, vis_Pose_7, vis_Pose_8 = True, True, True, True
+
+ else: # step2_camera_motion = CAMERA_MOTION_MODE[2]:
+ vis_basic_camera_motion = False
+ vis_basic_camera_motion_des = False
+ vis_custom_camera_motion = True
+ vis_custom_run_status = True
+ vis_complex_camera_motion = False
+ vis_complex_camera_motion_des = False
+ vis_U = True
+ vis_D = True
+ vis_L = True
+ vis_R = True
+ vis_I = True
+ vis_O = True
+ vis_ACW = True
+ vis_CW = True
+ vis_combine1 = True
+ vis_combine2 = True
+ vis_speed = True
+
+ vis_Pose_1, vis_Pose_2, vis_Pose_3, vis_Pose_4 = False, False, False, False
+ vis_Pose_5, vis_Pose_6, vis_Pose_7, vis_Pose_8 = False, False, False, False
+
+ vis_camera_args = True
+ vis_camera_reset = True
+ vis_camera_vis = True
+ vis_vis_camera = True
+
+ return gr.update(visible=vis_basic_camera_motion), \
+ gr.update(visible=vis_basic_camera_motion_des), \
+ gr.update(visible=vis_custom_camera_motion), \
+ gr.update(visible=vis_custom_run_status), \
+ gr.update(visible=vis_complex_camera_motion), \
+ gr.update(visible=vis_complex_camera_motion_des), \
+ gr.update(visible=vis_U), gr.update(visible=vis_D), gr.update(visible=vis_L), gr.update(visible=vis_R), \
+ gr.update(visible=vis_I), gr.update(visible=vis_O), gr.update(visible=vis_ACW), gr.update(visible=vis_CW), \
+ gr.update(visible=vis_combine1), gr.update(visible=vis_combine2), \
+ gr.update(visible=vis_speed), \
+ gr.update(visible=vis_Pose_1), gr.update(visible=vis_Pose_2), gr.update(visible=vis_Pose_3), gr.update(visible=vis_Pose_4), \
+ gr.update(visible=vis_Pose_5), gr.update(visible=vis_Pose_6), gr.update(visible=vis_Pose_7), gr.update(visible=vis_Pose_8), \
+ gr.update(visible=vis_camera_args, value=None), \
+ gr.update(visible=vis_camera_reset), gr.update(visible=vis_camera_vis), \
+ gr.update(visible=vis_vis_camera, value=None), \
+ gr.update(visible=vis_step3_prompt_generate), \
+ gr.update(visible=vis_prompt), \
+ gr.update(visible=vis_num_samples), \
+ gr.update(visible=vis_seed), \
+ gr.update(visible=vis_start), \
+ gr.update(visible=vis_gen_video)
+
+def visualized_traj_poses(step2_object_motion):
+
+ fn_traj_reset()
+
+ # generate video
+ vis_step3_prompt_generate = False
+ vis_prompt = False
+ vis_num_samples = False
+ vis_seed = False
+ vis_start = False
+ vis_gen_video = False
+
+ if step2_object_motion == "Provided Trajectory":
+ vis_provided_traj = True
+ vis_provided_traj_des = True
+ vis_draw_yourself = False
+ vis_draw_run_status = False
+
+ vis_traj_1, vis_traj_2, vis_traj_3, vis_traj_4 = True, True, True, True
+ vis_traj_5, vis_traj_6, vis_traj_7, vis_traj_8 = True, True, True, True
+
+ traj_args = True
+ traj_droplast, traj_reset = False, True
+ traj_vis = True
+ traj_input, vis_traj = False, True
+
+
+ elif step2_object_motion == "Custom Trajectory":
+ vis_provided_traj = False
+ vis_provided_traj_des = False
+ vis_draw_yourself = True
+ vis_draw_run_status = True
+
+ vis_traj_1, vis_traj_2, vis_traj_3, vis_traj_4 = False, False, False, False
+ vis_traj_5, vis_traj_6, vis_traj_7, vis_traj_8 = False, False, False, False
+
+ traj_args = True
+ traj_droplast, traj_reset = True, True
+ traj_vis = True
+ traj_input, vis_traj = True, True
+
+ return gr.update(visible=vis_provided_traj), \
+ gr.update(visible=vis_provided_traj_des), \
+ gr.update(visible=vis_draw_yourself), \
+ gr.update(visible=vis_draw_run_status), \
+ gr.update(visible=vis_traj_1), gr.update(visible=vis_traj_2), gr.update(visible=vis_traj_3), gr.update(visible=vis_traj_4), \
+ gr.update(visible=vis_traj_5), gr.update(visible=vis_traj_6), gr.update(visible=vis_traj_7), gr.update(visible=vis_traj_8), \
+ gr.update(visible=traj_args), \
+ gr.update(visible=traj_droplast), gr.update(visible=traj_reset), \
+ gr.update(visible=traj_vis), \
+ gr.update(visible=traj_input), gr.update(visible=vis_traj, value=None), \
+ gr.update(visible=vis_step3_prompt_generate), \
+ gr.update(visible=vis_prompt), \
+ gr.update(visible=vis_num_samples), \
+ gr.update(visible=vis_seed), \
+ gr.update(visible=vis_start), \
+ gr.update(visible=vis_gen_video)
+
+def main(args):
+ demo = gr.Blocks()
+ with demo:
+
+ gr.Markdown(title)
+ gr.Markdown(description)
+
+ # state = gr.State({
+ # "mode": "camera_only",
+ # "camera_input": [],
+ # "traj_input": [],
+ # })
+
+ with gr.Column():
+ '''
+ # step 0: select based model.
+ gr.Markdown("## Step0: Selecting the model", show_label=False)
+ gr.Markdown( f'- {BASE_MODEL[0]}: **MotionCtrl** deployed on {BASE_MODEL[0]}', show_label=False)
+ gr.Markdown( f'- {BASE_MODEL[1]}: **MotionCtrl** deployed on {BASE_MODEL[1]}', show_label=False)
+ gr.Markdown( f'- {BASE_MODEL[2]}: **MotionCtrl** deployed on {BASE_MODEL[2]}', show_label=False)
+ gr.Markdown( f'- **Only the model that deployed on {BASE_MODEL[0]} is avalible now. MotionCtrl models deployed on {BASE_MODEL[1]} and {BASE_MODEL[2]} are coming soon.**', show_label=False)
+ gr.Radio(choices=BASE_MODEL, value=BASE_MODEL[0], label="Based Model", interactive=False)
+ '''
+
+ # step 1: select motion control mode
+ gr.Markdown("## Step 1/3: Selecting the motion control mode", show_label=False)
+ gr.Markdown( f'- {MODE[0]}: Control the camera motion only', show_label=False)
+ gr.Markdown( f'- {MODE[1]}: Control the object motion only', show_label=False)
+ gr.Markdown( f'- {MODE[2]}: Control both the camera and object motion', show_label=False)
+ gr.Markdown( f'- Click `Proceed` to go into next step', show_label=False)
+ infer_mode = gr.Radio(choices=MODE, value=MODE[0], label="Motion Control Mode", interactive=True)
+ mode_info = gr.Button(value="Proceed")
+
+ # step2 - camera + object motion control
+ step2_camera_object_motion = gr.Markdown("---\n## Step 2/3: Select the camera poses and trajectory", show_label=False, visible=False)
+ step2_camera_object_motion_des = gr.Markdown(f"\n 1. Select a basic camera pose. \
+ \n 2. Select a provided trajectory or draw the trajectory yourself.",
+ show_label=False, visible=False)
+
+ # step2 - camera motion control
+ step2_camera_motion = gr.Markdown("---\n## Step 2/3: Select the camera poses", show_label=False, visible=False)
+ step2_camera_motion_des = gr.Markdown(f"\n - {CAMERA_MOTION_MODE[0]}: Including 8 basic camera poses, such as pan up, pan down, zoom in, and zoom out. \
+ \n - {CAMERA_MOTION_MODE[1]}: Complex camera poses extracted from the real videos. \
+ \n - {CAMERA_MOTION_MODE[2]}: You can customize complex camera poses yourself by combining or fusing two of the eight basic camera poses. \
+ \n - Click `Proceed` to go into next step",
+ show_label=False, visible=False)
+ camera_mode = gr.Radio(choices=CAMERA_MOTION_MODE, value=CAMERA_MOTION_MODE[0], label="Camera Motion Control Mode", interactive=True, visible=False)
+ camera_info = gr.Button(value="Proceed", visible=False)
+
+ with gr.Row():
+ with gr.Column():
+ # step2.1 - camera motion control - basic
+ basic_camera_motion = gr.Markdown("---\n### Basic Camera Poses", show_label=False, visible=False)
+ basic_camera_motion_des = gr.Markdown(f"\n 1. Click one of the basic camera poses, such as `Pan Up`; \
+ \n 2. Slide the `Motion speed` to get a speed value. The large the value, the fast the camera motion; \
+ \n 3. Click `Visualize Camera and Proceed` to visualize the camera poses and go proceed; \
+ \n 4. Click `Reset Camera` to reset the camera poses (If needed). ",
+ show_label=False, visible=False)
+
+
+ # step2.2 - camera motion control - provided complex
+ complex_camera_motion = gr.Markdown("---\n### Provided Complex Camera Poses", show_label=False, visible=False)
+ complex_camera_motion_des = gr.Markdown(f"\n 1. Click one of the complex camera poses, such as `Pose_1`; \
+ \n 2. Click `Visualize Camera and Proceed` to visualize the camera poses and go proceed; \
+ \n 3. Click `Reset Camera` to reset the camera poses (If needed). ",
+ show_label=False, visible=False)
+
+ # step2.3 - camera motion control - custom
+ custom_camera_motion = gr.Markdown("---\n### Custom Camera Poses", show_label=False, visible=False)
+ custom_run_status = gr.Markdown(f"\n 1. Click two of the basic camera poses, such as `Pan Up` and `Pan Left`; \
+ \n 2. Click `Customized Mode 1: First A then B` or `Customized Mode 1: First A then B` \
+ \n - `Customized Mode 1: First A then B`: The camera first `Pan Up` and then `Pan Left`; \
+ \n - `Customized Mode 2: Both A and B`: The camera move towards the upper left corner; \
+ \n 3. Slide the `Motion speed` to get a speed value. The large the value, the fast the camera motion; \
+ \n 4. Click `Visualize Camera and Proceed` to visualize the camera poses and go proceed; \
+ \n 5. Click `Reset Camera` to reset the camera poses (If needed). ",
+ show_label=False, visible=False)
+
+ gr.HighlightedText(value=[("",""), ("1. Select two of the basic camera poses; 2. Select Customized Mode 1 OR Customized Mode 2. 3. Visualized Camera to show the customized camera poses", "Normal")],
+ color_map={"Normal": "green", "Error": "red", "Clear clicks": "gray", "Add mask": "green", "Remove mask": "red"}, visible=False)
+
+ with gr.Row():
+ U = gr.Button(value="Pan Up", visible=False)
+ D = gr.Button(value="Pan Down", visible=False)
+ L = gr.Button(value="Pan Left", visible=False)
+ R = gr.Button(value="Pan Right", visible=False)
+ with gr.Row():
+ I = gr.Button(value="Zoom In", visible=False)
+ O = gr.Button(value="Zoom Out", visible=False)
+ ACW = gr.Button(value="ACW", visible=False)
+ CW = gr.Button(value="CW", visible=False)
+
+ with gr.Row():
+ combine1 = gr.Button(value="Customized Mode 1: First A then B", visible=False)
+ combine2 = gr.Button(value="Customized Mode 2: Both A and B", visible=False)
+
+ with gr.Row():
+ speed = gr.Slider(minimum=0, maximum=2, step=0.2, label="Motion Speed", value=1.0, visible=False)
+
+ with gr.Row():
+ Pose_1 = gr.Button(value="Pose_1", visible=False)
+ Pose_2 = gr.Button(value="Pose_2", visible=False)
+ Pose_3 = gr.Button(value="Pose_3", visible=False)
+ Pose_4 = gr.Button(value="Pose_4", visible=False)
+ with gr.Row():
+ Pose_5 = gr.Button(value="Pose_5", visible=False)
+ Pose_6 = gr.Button(value="Pose_6", visible=False)
+ Pose_7 = gr.Button(value="Pose_7", visible=False)
+ Pose_8 = gr.Button(value="Pose_8", visible=False)
+
+ with gr.Row():
+ camera_args = gr.Textbox(value="Camera Type", label="Camera Type", visible=False)
+ with gr.Row():
+ camera_vis= gr.Button(value="Visualize Camera and Proceed", visible=False)
+ camera_reset = gr.Button(value="Reset Camera", visible=False)
+ with gr.Column():
+ vis_camera = gr.Plot(fig, label='Camera Poses', visible=False)
+
+ # step2 - object motion control
+ step2_object_motion = gr.Markdown("---\n## Step 2/3: Select a Provided Trajectory of Draw Yourself", show_label=False, visible=False)
+ step2_object_motion_des = gr.Markdown(f"\n - {OBJECT_MOTION_MODE[0]}: We provide some example trajectories. You can select one of them directly. \
+ \n - {OBJECT_MOTION_MODE[1]}: Draw the trajectory yourself. \
+ \n - Click `Proceed` to go into next step",
+ show_label=False, visible=False)
+
+ object_mode = gr.Radio(choices=OBJECT_MOTION_MODE, value=OBJECT_MOTION_MODE[0], label="Motion Control Mode", interactive=True, visible=False)
+ object_info = gr.Button(value="Proceed", visible=False)
+
+ with gr.Row():
+ with gr.Column():
+ # step2.1 - object motion control - provided
+ provided_traj = gr.Markdown("---\n### Provided Trajectory", show_label=False, visible=False)
+ provided_traj_des = gr.Markdown(f"\n 1. Click one of the provided trajectories, such as `horizon_1`; \
+ \n 2. Click `Visualize Trajectory and Proceed` to visualize the trajectory and go proceed; \
+ \n 3. Click `Reset Trajectory` to reset the trajectory (If needed). ",
+ show_label=False, visible=False)
+
+ # step2.2 - object motion control - draw yourself
+ draw_traj = gr.Markdown("---\n### Draw Yourself", show_label=False, visible=False)
+ draw_run_status = gr.Markdown(f"\n 1. Click the `Canvas` in the right to draw the trajectory. **Note that You have to click the canva many times. For time saving, \
+ the click point will not appear in the canvas but its coordinates will be written in `Points of Trajectory`**; \
+ \n 2. Click `Visualize Trajectory and Proceed` to visualize the trajectory and go proceed; \
+ \n 3. Click `Reset Trajectory` to reset the trajectory (If needed). ",
+ show_label=False, visible=False)
+
+ with gr.Row():
+ traj_1 = gr.Button(value="horizon_1", visible=False)
+ traj_2 = gr.Button(value="swaying_1", visible=False)
+ traj_3 = gr.Button(value="swaying_2", visible=False)
+ traj_4 = gr.Button(value="swaying_3", visible=False)
+ with gr.Row():
+ traj_5 = gr.Button(value="curve_1", visible=False)
+ traj_6 = gr.Button(value="curve_2", visible=False)
+ traj_7 = gr.Button(value="curve_3", visible=False)
+ traj_8 = gr.Button(value="curve_4", visible=False)
+
+ traj_args = gr.Textbox(value="", label="Points of Trajectory", visible=False)
+ with gr.Row():
+ traj_vis = gr.Button(value="Visualize Trajectory and Proceed", visible=False)
+ traj_reset = gr.Button(value="Reset Trajectory", visible=False)
+ traj_droplast = gr.Button(value="Drop Last Point", visible=False)
+
+ with gr.Column():
+ traj_input = gr.Image("assets/traj_layout.png", tool='sketch', source="canvas",
+ width=256, height=256,
+ label="Canvas for Drawing", visible=False)
+ vis_traj = gr.Video(value=None, label="Trajectory", visible=False, width=256, height=256)
+
+
+
+ # step3 - Add prompt and Generate videos
+ with gr.Row():
+ with gr.Column():
+ step3_prompt_generate = gr.Markdown("---\n## Step 3/3: Add prompt and Generate videos", show_label=False, visible=False)
+ prompt = gr.Textbox(value="a dog sitting on grass", label="Prompt", interactive=True, visible=False)
+ n_samples = gr.Number(value=3, precision=0, interactive=True, label="n_samples", visible=False)
+ seed = gr.Number(value=1234, precision=0, interactive=True, label="Seed", visible=False)
+ start = gr.Button(value="Start generation !", visible=False)
+ with gr.Column():
+ gen_video = gr.Video(value=None, label="Generate Video", visible=False)
+
+ mode_info.click(
+ fn=visualized_step2,
+ inputs=[infer_mode],
+ outputs=[step2_camera_motion,
+ step2_camera_motion_des,
+ camera_mode,
+ camera_info,
+
+ basic_camera_motion,
+ basic_camera_motion_des,
+ custom_camera_motion,
+ custom_run_status,
+ complex_camera_motion,
+ complex_camera_motion_des,
+ U, D, L, R,
+ I, O, ACW, CW,
+ combine1, combine2,
+ speed,
+ Pose_1, Pose_2, Pose_3, Pose_4,
+ Pose_5, Pose_6, Pose_7, Pose_8,
+ camera_args,
+ camera_reset, camera_vis,
+ vis_camera,
+
+ step2_object_motion,
+ step2_object_motion_des,
+ object_mode,
+ object_info,
+
+ provided_traj,
+ provided_traj_des,
+ draw_traj,
+ draw_run_status,
+ traj_1, traj_2, traj_3, traj_4,
+ traj_5, traj_6, traj_7, traj_8,
+ traj_args,
+ traj_droplast, traj_reset,
+ traj_vis,
+ traj_input, vis_traj,
+
+ step2_camera_object_motion,
+ step2_camera_object_motion_des,
+
+ step3_prompt_generate, prompt, n_samples, seed, start, gen_video,
+
+ ],
+ )
+
+ camera_info.click(
+ fn=visualized_camera_poses,
+ inputs=[camera_mode],
+ outputs=[basic_camera_motion,
+ basic_camera_motion_des,
+ custom_camera_motion,
+ custom_run_status,
+ complex_camera_motion,
+ complex_camera_motion_des,
+ U, D, L, R,
+ I, O, ACW, CW,
+ combine1, combine2,
+ speed,
+ Pose_1, Pose_2, Pose_3, Pose_4,
+ Pose_5, Pose_6, Pose_7, Pose_8,
+ camera_args,
+ camera_reset, camera_vis,
+ vis_camera,
+ step3_prompt_generate, prompt, n_samples, seed, start, gen_video],
+ )
+
+ object_info.click(
+ fn=visualized_traj_poses,
+ inputs=[object_mode],
+ outputs=[provided_traj,
+ provided_traj_des,
+ draw_traj,
+ draw_run_status,
+ traj_1, traj_2, traj_3, traj_4,
+ traj_5, traj_6, traj_7, traj_8,
+ traj_args,
+ traj_droplast, traj_reset,
+ traj_vis,
+ traj_input, vis_traj,
+ step3_prompt_generate, prompt, n_samples, seed, start, gen_video,],
+ )
+
+
+ U.click(fn=add_camera_motion, inputs=[U, camera_mode], outputs=camera_args)
+ D.click(fn=add_camera_motion, inputs=[D, camera_mode], outputs=camera_args)
+ L.click(fn=add_camera_motion, inputs=[L, camera_mode], outputs=camera_args)
+ R.click(fn=add_camera_motion, inputs=[R, camera_mode], outputs=camera_args)
+ I.click(fn=add_camera_motion, inputs=[I, camera_mode], outputs=camera_args)
+ O.click(fn=add_camera_motion, inputs=[O, camera_mode], outputs=camera_args)
+ ACW.click(fn=add_camera_motion, inputs=[ACW, camera_mode], outputs=camera_args)
+ CW.click(fn=add_camera_motion, inputs=[CW, camera_mode], outputs=camera_args)
+ speed.change(fn=change_camera_speed, inputs=speed, outputs=camera_args)
+ camera_reset.click(fn=reset_camera, inputs=None, outputs=[camera_args])
+
+ combine1.click(fn=change_camera_mode, inputs=[combine1, camera_mode], outputs=camera_args)
+ combine2.click(fn=change_camera_mode, inputs=[combine2, camera_mode], outputs=camera_args)
+
+ camera_vis.click(fn=fn_vis_camera, inputs=[infer_mode], outputs=[vis_camera, object_mode, object_info, step3_prompt_generate, prompt, n_samples, seed, start, gen_video])
+
+ Pose_1.click(fn=add_complex_camera_motion, inputs=Pose_1, outputs=camera_args)
+ Pose_2.click(fn=add_complex_camera_motion, inputs=Pose_2, outputs=camera_args)
+ Pose_3.click(fn=add_complex_camera_motion, inputs=Pose_3, outputs=camera_args)
+ Pose_4.click(fn=add_complex_camera_motion, inputs=Pose_4, outputs=camera_args)
+ Pose_5.click(fn=add_complex_camera_motion, inputs=Pose_5, outputs=camera_args)
+ Pose_6.click(fn=add_complex_camera_motion, inputs=Pose_6, outputs=camera_args)
+ Pose_7.click(fn=add_complex_camera_motion, inputs=Pose_7, outputs=camera_args)
+ Pose_8.click(fn=add_complex_camera_motion, inputs=Pose_8, outputs=camera_args)
+
+ traj_1.click(fn=add_provided_traj, inputs=traj_1, outputs=traj_args)
+ traj_2.click(fn=add_provided_traj, inputs=traj_2, outputs=traj_args)
+ traj_3.click(fn=add_provided_traj, inputs=traj_3, outputs=traj_args)
+ traj_4.click(fn=add_provided_traj, inputs=traj_4, outputs=traj_args)
+ traj_5.click(fn=add_provided_traj, inputs=traj_5, outputs=traj_args)
+ traj_6.click(fn=add_provided_traj, inputs=traj_6, outputs=traj_args)
+ traj_7.click(fn=add_provided_traj, inputs=traj_7, outputs=traj_args)
+ traj_8.click(fn=add_provided_traj, inputs=traj_8, outputs=traj_args)
+
+ traj_vis.click(fn=fn_vis_traj, inputs=None, outputs=[vis_traj, step3_prompt_generate, prompt, n_samples, seed, start, gen_video])
+ traj_input.select(fn=add_traj_point, inputs=None, outputs=traj_args)
+ traj_droplast.click(fn=fn_traj_droplast, inputs=None, outputs=traj_args)
+ traj_reset.click(fn=fn_traj_reset, inputs=None, outputs=traj_args)
+
+
+ start.click(fn=model_run, inputs=[prompt, infer_mode, seed, n_samples], outputs=gen_video)
+
+ gr.Markdown(article)
+
+ # demo.launch(server_name='0.0.0.0', share=False, server_port=args.port)
+ demo.queue(concurrency_count=1, max_size=10)
+ demo.launch()
+
+
+
+if __name__=="__main__":
+ parser = argparse.ArgumentParser()
+ parser.add_argument("--port", type=int, default=12345)
+ args = parser.parse_args()
+
+ main(args)
diff --git a/assets/traj_layout.png b/assets/traj_layout.png
new file mode 100644
index 0000000000000000000000000000000000000000..17761ff18b17eb6e31ec0ef0f8d9eb9acd9c6235
Binary files /dev/null and b/assets/traj_layout.png differ
diff --git a/configs/inference/config_both.yaml b/configs/inference/config_both.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..47fef6c961c4ca3005f7e6b666e68e4dca742d01
--- /dev/null
+++ b/configs/inference/config_both.yaml
@@ -0,0 +1,104 @@
+model:
+ base_learning_rate: 0.0001
+ scale_lr: false
+ target: motionctrl.motionctrl.MotionCtrl
+ params:
+ # param for object motion control
+ omcm_config:
+ pretrained: ~
+ target: lvdm.modules.encoders.adapter.Adapter
+ params:
+ channels:
+ - 320
+ - 640
+ - 1280
+ - 1280
+ nums_rb: 2
+ cin: 128
+ sk: true
+ use_conv: false
+
+ linear_start: 0.00085
+ linear_end: 0.012
+ num_timesteps_cond: 1
+ log_every_t: 200
+ timesteps: 1000
+ first_stage_key: video
+ cond_stage_key: caption
+ cond_stage_trainable: false
+ conditioning_key: crossattn
+ image_size:
+ - 32
+ - 32
+ channels: 4
+ scale_by_std: false
+ scale_factor: 0.18215
+ use_ema: false
+ uncond_prob: 0.1
+ uncond_type: empty_seq
+ empty_params_only: true
+ scheduler_config:
+ target: utils.lr_scheduler.LambdaLRScheduler
+ interval: step
+ frequency: 100
+ params:
+ start_step: 0
+ final_decay_ratio: 0.01
+ decay_steps: 20000
+ unet_config:
+ target: lvdm.modules.networks.openaimodel3d_next.UNetModel
+ params:
+ in_channels: 4
+ out_channels: 4
+ model_channels: 320
+ attention_resolutions:
+ - 4
+ - 2
+ - 1
+ num_res_blocks: 2
+ channel_mult:
+ - 1
+ - 2
+ - 4
+ - 4
+ num_head_channels: 64
+ transformer_depth: 1
+ context_dim: 1024
+ use_linear: true
+ use_checkpoint: true
+ temporal_conv: true
+ temporal_attention: true
+ temporal_selfatt_only: true
+ use_relative_position: false
+ use_causal_attention: false
+ temporal_length: 16
+ use_image_dataset: false
+ addition_attention: true
+ first_stage_config:
+ target: lvdm.models.autoencoder.AutoencoderKL
+ params:
+ embed_dim: 4
+ monitor: val/rec_loss
+ ddconfig:
+ double_z: true
+ z_channels: 4
+ resolution: 256
+ in_channels: 3
+ out_ch: 3
+ ch: 128
+ ch_mult:
+ - 1
+ - 2
+ - 4
+ - 4
+ num_res_blocks: 2
+ attn_resolutions: []
+ dropout: 0.0
+ lossconfig:
+ target: torch.nn.Identity
+ cond_stage_config:
+ target: lvdm.modules.encoders.condition2.FrozenOpenCLIPEmbedder
+ params:
+ freeze: true
+ layer: penultimate
+
\ No newline at end of file
diff --git a/configs/inference/run.sh b/configs/inference/run.sh
new file mode 100644
index 0000000000000000000000000000000000000000..366da483e75a9763489ff2b97518fa61f4101888
--- /dev/null
+++ b/configs/inference/run.sh
@@ -0,0 +1,52 @@
+
+config="configs/inference/config_both.yaml"
+ckpt='./checkpoints/motionctrl.pth'
+
+condtype='both'
+condtype='object_motion'
+condtype='camera_motion'
+
+cond_dir="examples/"
+
+res_dir="./outputs/"
+if [ ! -d $res_dir ]; then
+ mkdir -p $res_dir
+fi
+
+save_dir=$res_dir/$condtype'_seed'$seed
+
+use_ddp=0
+
+if [ $use_ddp == 0 ]; then
+CUDA_VISIBLE_DEVICES=7 python 'main/evaluation/motionctrl_inference.py' \
+--seed 1234 \
+--ckpt_path $ckpt \
+--base $config \
+--savedir $save_dir \
+--n_samples 5 \
+--bs 1 --height 256 --width 256 \
+--unconditional_guidance_scale 7.5 \
+--ddim_steps 50 \
+--ddim_eta 1.0 \
+--condtype $condtype \
+--cond_dir $cond_dir \
+# --save_imgs
+fi
+
+if [ $use_ddp == 1 ]; then
+python3 -m torch.distributed.launch \
+--nproc_per_node=3 --nnodes=1 --master_port=23466 \
+main/evaluation/ddp_wrapper.py \
+--module 'inference' \
+--seed 2000 \
+--ckpt_path $ckpt \
+--base $config \
+--savedir $res_dir/$name \
+--n_samples 3 \
+--bs 1 --height 256 --width 256 \
+--unconditional_guidance_scale 7.5 \
+--ddim_steps 50 \
+--ddim_eta 1.0 \
+--condtype $condtype \
+--cond_dir $cond_dir
+fi
\ No newline at end of file
diff --git a/examples/camera_poses/test_camera_018f7907401f2fef.json b/examples/camera_poses/test_camera_018f7907401f2fef.json
new file mode 100644
index 0000000000000000000000000000000000000000..c9cc8fa2c3ca1200ca75b2e3a4a381cf75d8f157
--- /dev/null
+++ b/examples/camera_poses/test_camera_018f7907401f2fef.json
@@ -0,0 +1 @@
+[[1.0, -4.493872218791495e-10, 5.58983348497577e-09, 1.9967236752904682e-09, -4.493872218791495e-10, 1.0, -6.144247333139674e-10, 1.0815730533408896e-09, 5.58983348497577e-09, -6.144247333139674e-10, 1.0, -7.984015226725205e-09], [0.9982863664627075, -0.0024742060340940952, 0.05846544727683067, -0.024547122418880463, 0.002410230925306678, 0.9999964237213135, 0.0011647245846688747, -0.003784072818234563, -0.05846811458468437, -0.0010218139505013824, 0.9982887506484985, -0.09103696048259735], [0.9933298230171204, -0.006303737405687571, 0.11513543128967285, -0.053876250982284546, 0.00586089538410306, 0.9999741315841675, 0.004184383898973465, -0.006566310301423073, -0.115158811211586, -0.0034816779661923647, 0.9933409690856934, -0.18525512516498566], [0.9849286675453186, -0.013619760051369667, 0.17242403328418732, -0.08322551101446152, 0.01256392989307642, 0.9998950958251953, 0.0072133541107177734, -0.004579910542815924, -0.17250417172908783, -0.004938316997140646, 0.9849964380264282, -0.28701746463775635], [0.9731453657150269, -0.022617166861891747, 0.2290775030851364, -0.11655563861131668, 0.02060025744140148, 0.9997251629829407, 0.011192308738827705, -0.0017426757840439677, -0.2292676568031311, -0.006172688212245703, 0.9733438491821289, -0.37736839056015015], [0.9582399725914001, -0.03294993191957474, 0.2840607464313507, -0.15743066370487213, 0.030182993039488792, 0.9994447827339172, 0.014113469049334526, -0.002769832033663988, -0.28436803817749023, -0.004950287751853466, 0.9587023854255676, -0.46959081292152405], [0.940129816532135, -0.03991429880261421, 0.3384712040424347, -0.22889098525047302, 0.03725311905145645, 0.9992027282714844, 0.01435780432075262, -0.0028311305213719606, -0.3387744128704071, -0.0008890923927538097, 0.9408671855926514, -0.5631460547447205], [0.9222924709320068, -0.044258520007133484, 0.38395029306411743, -0.2986142039299011, 0.04110203683376312, 0.9990199208259583, 0.01642671786248684, 0.0013055746676400304, -0.38430097699165344, 0.000630900904070586, 0.9232076406478882, -0.6414245367050171], [0.9061535000801086, -0.04851173609495163, 0.4201577305793762, -0.3483412563800812, 0.04521748423576355, 0.9988185167312622, 0.017803886905312538, 0.0010280977003276348, -0.4205249547958374, 0.0028654206544160843, 0.907276451587677, -0.7144853472709656], [0.8919307589530945, -0.05171844735741615, 0.4492044746875763, -0.37905213236808777, 0.04818608984351158, 0.9986518621444702, 0.019300933927297592, 0.00036871168413199484, -0.44959715008735657, 0.004430312197655439, 0.8932204246520996, -0.7976372241973877], [0.8792291879653931, -0.05425972864031792, 0.47329893708229065, -0.39671003818511963, 0.05076585337519646, 0.998507022857666, 0.02016463316977024, 0.001104982104152441, -0.4736863970756531, 0.00629808846861124, 0.8806710243225098, -0.8874085545539856], [0.8659296035766602, -0.0567130371928215, 0.49694016575813293, -0.4097800552845001, 0.05366959795355797, 0.9983500838279724, 0.020415671169757843, 0.0009228077251464128, -0.497278094291687, 0.008992047980427742, 0.8675445914268494, -0.9762357473373413], [0.8503361940383911, -0.055699657648801804, 0.5232837200164795, -0.44268566370010376, 0.054582174867391586, 0.9983546733856201, 0.01757136546075344, 0.005412018392235041, -0.5234014391899109, 0.013620397076010704, 0.8519773483276367, -1.069865107536316], [0.836037814617157, -0.05214058235287666, 0.5461887717247009, -0.4671085774898529, 0.05177384987473488, 0.9985294938087463, 0.01607322134077549, 0.008980141952633858, -0.5462236404418945, 0.014840473420917988, 0.8375079035758972, -1.1569048166275024], [0.82603919506073, -0.04987695440649986, 0.5614013671875, -0.4677649438381195, 0.05124447122216225, 0.9985973834991455, 0.013318539597094059, 0.012170637026429176, -0.5612781643867493, 0.017767081037163734, 0.8274364471435547, -1.2651430368423462], [0.8179472088813782, -0.0496118925511837, 0.573150098323822, -0.45822662115097046, 0.052784956991672516, 0.9985441565513611, 0.011104168370366096, 0.018991567194461823, -0.5728666186332703, 0.0211710836738348, 0.8193751573562622, -1.3895009756088257]]
\ No newline at end of file
diff --git a/examples/camera_poses/test_camera_088b93f15ca8745d.json b/examples/camera_poses/test_camera_088b93f15ca8745d.json
new file mode 100644
index 0000000000000000000000000000000000000000..eeabf8894882e430e672f1cfeb5003ca419da7dc
--- /dev/null
+++ b/examples/camera_poses/test_camera_088b93f15ca8745d.json
@@ -0,0 +1 @@
+[[0.9999999403953552, 3.8618797049139175e-10, -1.3441345814158012e-08, 1.3928219289027766e-07, 3.8618797049139175e-10, 1.0, -4.134579345560496e-10, -6.074658998045379e-09, -1.3441345814158012e-08, -4.134579345560496e-10, 1.0, 7.038884319854333e-08], [0.9994913339614868, 0.003077245783060789, -0.031741149723529816, 0.08338673412799835, -0.0030815028585493565, 0.999995231628418, -8.520588744431734e-05, 0.006532138213515282, 0.0317407064139843, 0.00018297435599379241, 0.9994961619377136, -0.02256060019135475], [0.9979938268661499, 0.0051255361177027225, -0.06310292333364487, 0.18344485759735107, -0.005117486696690321, 0.9999868869781494, 0.00028916727751493454, 0.018134046345949173, 0.06310353428125381, 3.434090831433423e-05, 0.9980069994926453, -0.030579563230276108], [0.9954646825790405, 0.00820203311741352, -0.0947771891951561, 0.29663264751434326, -0.00811922550201416, 0.9999662041664124, 0.0012593322899192572, 0.02404301054775715, 0.09478426724672318, -0.0004841022891923785, 0.9954977035522461, -0.02678978443145752], [0.9913660883903503, 0.012001598253846169, -0.13057230412960052, 0.4076530337333679, -0.011968829669058323, 0.999927818775177, 0.0010357286082580686, 0.024977533146739006, 0.1305752843618393, 0.0005360084469430149, 0.9914382100105286, -0.010779343545436859], [0.985666811466217, 0.017323914915323257, -0.16781197488307953, 0.509911060333252, -0.017399737611413002, 0.9998481273651123, 0.0010186078725382686, 0.023117201402783394, 0.16780413687229156, 0.0019158748909831047, 0.9858185052871704, 0.018053216859698296], [0.9784473180770874, 0.022585421800613403, -0.20525763928890228, 0.5957884192466736, -0.022850200533866882, 0.9997382760047913, 0.0010805513011291623, 0.020451901480555534, 0.2052282989025116, 0.003632916137576103, 0.9787073731422424, 0.03460140898823738], [0.9711515307426453, 0.026846906170248985, -0.23694702982902527, 0.6832671165466309, -0.02745947800576687, 0.999622642993927, 0.0007151798927225173, 0.012211678549647331, 0.23687675595283508, 0.005811895243823528, 0.971522331237793, 0.03236595541238785], [0.9641746878623962, 0.030338184908032417, -0.26352745294570923, 0.7764986157417297, -0.031404945999383926, 0.9995067715644836, 0.0001645474840188399, 0.0011497576488181949, 0.26340243220329285, 0.008117412216961384, 0.964651882648468, 0.022656364366412163], [0.9573631882667542, 0.0335896760225296, -0.2869274914264679, 0.8815275430679321, -0.03532479330897331, 0.9993755221366882, -0.0008711823611520231, -0.003618708113208413, 0.2867189943790436, 0.010969695635139942, 0.9579519033432007, 0.005283573176711798], [0.9507063627243042, 0.036557890474796295, -0.3079299330711365, 0.9931321740150452, -0.03846294432878494, 0.9992600679397583, -0.00011733790597645566, 0.0018704120302572846, 0.30769774317741394, 0.01195544097572565, 0.9514090418815613, -0.035360634326934814], [0.9448517560958862, 0.039408694952726364, -0.3251185715198517, 1.1025006771087646, -0.041503626853227615, 0.9991382360458374, 0.0004919985658489168, 0.007425118237733841, 0.32485777139663696, 0.013028733432292938, 0.9456731081008911, -0.09869624674320221], [0.940796971321106, 0.04081147164106369, -0.33650481700897217, 1.1961394548416138, -0.0429220013320446, 0.9990777373313904, 0.0011677180882543325, 0.019955899566411972, 0.336242139339447, 0.013344875536859035, 0.9416810274124146, -0.16835527122020721], [0.9376427531242371, 0.04111124947667122, -0.3451607823371887, 1.2392503023147583, -0.043144747614860535, 0.9990671873092651, 0.0017920633545145392, 0.03982722759246826, 0.34491249918937683, 0.013211555778980255, 0.938541829586029, -0.24618202447891235], [0.9353355765342712, 0.04122937470674515, -0.3513509929180145, 1.285768747329712, -0.043183211237192154, 0.9990646243095398, 0.0022769556380808353, 0.06841164082288742, 0.3511161506175995, 0.01304274145513773, 0.936241090297699, -0.3213619291782379], [0.9342393279075623, 0.041213057935237885, -0.3542574644088745, 1.3363462686538696, -0.04236872121691704, 0.9990919232368469, 0.0044970144517719746, 0.08925694227218628, 0.35412102937698364, 0.010808154009282589, 0.9351370930671692, -0.40201041102409363]]
\ No newline at end of file
diff --git a/examples/camera_poses/test_camera_1424acd0007d40b5.json b/examples/camera_poses/test_camera_1424acd0007d40b5.json
new file mode 100644
index 0000000000000000000000000000000000000000..02b37fd5a70f4db9b156257145734dc8f6b1499e
--- /dev/null
+++ b/examples/camera_poses/test_camera_1424acd0007d40b5.json
@@ -0,0 +1 @@
+[[1.0, 9.44418099280142e-10, 3.889182664806867e-08, 6.214055492392845e-09, 9.44418099280142e-10, 1.0, -1.0644604121756718e-11, -7.621465680784922e-10, 3.889182664806867e-08, -1.0644604121756718e-11, 1.0, -2.7145965475483536e-08], [0.9873979091644287, -0.007892023772001266, 0.15806053578853607, 0.4749181270599365, 0.008024877868592739, 0.9999678134918213, -0.00020230526570230722, 0.1585356593132019, -0.15805381536483765, 0.0014681711327284575, 0.9874294400215149, -0.2091633826494217], [0.9708925485610962, -0.011486345902085304, 0.23923994600772858, 0.8120080828666687, 0.012198254466056824, 0.9999244809150696, -0.0014952132478356361, 0.2486257702112198, -0.23920467495918274, 0.004370000213384628, 0.9709593057632446, -0.5957822799682617], [0.9619541168212891, -0.013188007287681103, 0.2728927433490753, 1.1486873626708984, 0.014017474837601185, 0.9999011754989624, -0.001090032048523426, 0.3114692270755768, -0.2728513777256012, 0.0048738280311226845, 0.962043821811676, -1.0323039293289185], [0.9586812257766724, -0.013936692848801613, 0.284140944480896, 1.5948307514190674, 0.014867136254906654, 0.9998888373374939, -0.0011181083973497152, 0.36000898480415344, -0.2840937674045563, 0.0052962712943553925, 0.958781898021698, -1.4377187490463257], [0.9583359360694885, -0.011928150430321693, 0.28539448976516724, 2.002793788909912, 0.014221147634088993, 0.9998810887336731, -0.0059633455239236355, 0.35464340448379517, -0.28528934717178345, 0.009773525409400463, 0.9583916068077087, -1.8953297138214111], [0.9584393501281738, -0.010862396098673344, 0.28508952260017395, 2.3351645469665527, 0.012857729569077492, 0.9999041557312012, -0.005128204356878996, 0.38934090733528137, -0.28500640392303467, 0.008580676279962063, 0.9584871530532837, -2.4214961528778076], [0.9587277173995972, -0.009760312736034393, 0.28415825963020325, 2.6858017444610596, 0.012186127714812756, 0.9999027848243713, -0.0067702098749578, 0.4173329174518585, -0.28406453132629395, 0.009953574277460575, 0.9587535262107849, -3.030754327774048], [0.9589635729789734, -0.0070899901911616325, 0.2834406793117523, 2.8917219638824463, 0.010482418350875378, 0.9998904466629028, -0.01045384630560875, 0.4001043438911438, -0.28333547711372375, 0.012996001169085503, 0.9589328169822693, -3.6960957050323486], [0.9590328931808472, -0.005921780597418547, 0.2832328677177429, 3.034579038619995, 0.00947173498570919, 0.9998928308486938, -0.01116593275219202, 0.4193899631500244, -0.2831363379955292, 0.013391205109655857, 0.9589861631393433, -4.384733200073242], [0.9593284726142883, -0.004661113955080509, 0.28225383162498474, 3.2042288780212402, 0.0076906089670956135, 0.9999240636825562, -0.009626304730772972, 0.4752484858036041, -0.28218749165534973, 0.011405492201447487, 0.9592914581298828, -5.098723411560059], [0.9591755867004395, -0.0035665074829012156, 0.2827887237071991, 3.263953924179077, 0.0062992447055876255, 0.9999418258666992, -0.008754877373576164, 0.4543868899345398, -0.282740980386734, 0.010178821161389351, 0.95914226770401, -5.7807512283325195], [0.9591742753982544, -0.003413048107177019, 0.2827949523925781, 3.3116462230682373, 0.003146615345031023, 0.9999940991401672, 0.0013963348465040326, 0.4299861788749695, -0.28279799222946167, -0.0004494813329074532, 0.9591793417930603, -6.478931903839111], [0.9585762619972229, -0.002857929328456521, 0.28482162952423096, 3.4120190143585205, -0.008201238699257374, 0.9992581605911255, 0.0376281812787056, 0.21596357226371765, -0.2847178280353546, -0.03840537369251251, 0.957841694355011, -7.178638935089111], [0.9572952389717102, -0.002719884505495429, 0.28909942507743835, 3.4662365913391113, -0.030634215101599693, 0.9933721423149109, 0.11078491061925888, -0.29767531156539917, -0.2874845862388611, -0.11491020023822784, 0.9508671164512634, -7.794575214385986], [0.9545961618423462, -0.005338957067579031, 0.29785510897636414, 3.5083835124969482, -0.06037351116538048, 0.9756243824958801, 0.2109788954257965, -1.0968165397644043, -0.29172107577323914, -0.21938219666481018, 0.9310050010681152, -8.306528091430664]]
\ No newline at end of file
diff --git a/examples/camera_poses/test_camera_D.json b/examples/camera_poses/test_camera_D.json
new file mode 100644
index 0000000000000000000000000000000000000000..0fa6462cba65992ec66f014933ca7c3e1ac9f9a8
--- /dev/null
+++ b/examples/camera_poses/test_camera_D.json
@@ -0,0 +1,226 @@
+[
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ -0.2,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ -0.28750000000000003,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ -0.37500000000000006,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ -0.4625000000000001,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ -0.55,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ -0.6375000000000002,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ -0.7250000000000001,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ -0.8125000000000002,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ -0.9000000000000001,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ -0.9875000000000003,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ -1.0750000000000002,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ -1.1625000000000003,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ -1.2500000000000002,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ -1.3375000000000001,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ -1.4250000000000003,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ -1.5125000000000004,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ]
+]
\ No newline at end of file
diff --git a/examples/camera_poses/test_camera_I.json b/examples/camera_poses/test_camera_I.json
new file mode 100644
index 0000000000000000000000000000000000000000..a44cc11f8bad536d2feb86a56f3e45441f4d12b9
--- /dev/null
+++ b/examples/camera_poses/test_camera_I.json
@@ -0,0 +1,226 @@
+[
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -0.2
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -0.28750000000000003
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -0.37500000000000006
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -0.4625000000000001
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -0.55
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -0.6375000000000002
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -0.7250000000000001
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -0.8125000000000002
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -0.9000000000000001
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -0.9875000000000003
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -1.0750000000000002
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -1.1625000000000003
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -1.2500000000000002
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -1.3375000000000001
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -1.4250000000000003
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -1.5125000000000004
+ ]
+]
\ No newline at end of file
diff --git a/examples/camera_poses/test_camera_I_0.2x.json b/examples/camera_poses/test_camera_I_0.2x.json
new file mode 100644
index 0000000000000000000000000000000000000000..c4c72597b15c09450618be858523e77f5c16d2b2
--- /dev/null
+++ b/examples/camera_poses/test_camera_I_0.2x.json
@@ -0,0 +1,226 @@
+[
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -0.022500000000000003
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -0.045000000000000005
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -0.0675
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -0.09000000000000001
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -0.11250000000000002
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -0.135
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -0.15750000000000003
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -0.18000000000000002
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -0.2025
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -0.22500000000000003
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -0.24750000000000003
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -0.27
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -0.29250000000000004
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -0.31500000000000006
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -0.3375
+ ]
+]
\ No newline at end of file
diff --git a/examples/camera_poses/test_camera_I_0.4x.json b/examples/camera_poses/test_camera_I_0.4x.json
new file mode 100644
index 0000000000000000000000000000000000000000..2359910f99fc32b0d54cfda17ad864afcadbf5c7
--- /dev/null
+++ b/examples/camera_poses/test_camera_I_0.4x.json
@@ -0,0 +1,226 @@
+[
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -0.045000000000000005
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -0.09000000000000001
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -0.135
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -0.18000000000000002
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -0.22500000000000003
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -0.27
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -0.31500000000000006
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -0.36000000000000004
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -0.405
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -0.45000000000000007
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -0.49500000000000005
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -0.54
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -0.5850000000000001
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -0.6300000000000001
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -0.675
+ ]
+]
\ No newline at end of file
diff --git a/examples/camera_poses/test_camera_I_1.0x.json b/examples/camera_poses/test_camera_I_1.0x.json
new file mode 100644
index 0000000000000000000000000000000000000000..46e3f75ee8ea4f0b204f27690dbccb61e814f7cd
--- /dev/null
+++ b/examples/camera_poses/test_camera_I_1.0x.json
@@ -0,0 +1,226 @@
+[
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -0.1125
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -0.225
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -0.3375
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -0.45
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -0.5625
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -0.675
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -0.7875
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -0.9
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -1.0125
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -1.125
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -1.2375
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -1.35
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -1.4625000000000001
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -1.575
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -1.6875
+ ]
+]
\ No newline at end of file
diff --git a/examples/camera_poses/test_camera_I_2.0x.json b/examples/camera_poses/test_camera_I_2.0x.json
new file mode 100644
index 0000000000000000000000000000000000000000..81207f6ef53151f1e01c771d0e13599d0183968b
--- /dev/null
+++ b/examples/camera_poses/test_camera_I_2.0x.json
@@ -0,0 +1,226 @@
+[
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -0.225
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -0.45
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -0.675
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -0.9
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -1.125
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -1.35
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -1.575
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -1.8
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -2.025
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -2.25
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -2.475
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -2.7
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -2.9250000000000003
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -3.15
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ -3.375
+ ]
+]
\ No newline at end of file
diff --git a/examples/camera_poses/test_camera_L.json b/examples/camera_poses/test_camera_L.json
new file mode 100644
index 0000000000000000000000000000000000000000..992b371f2e14ec52574f6777c78c89ecd23119b4
--- /dev/null
+++ b/examples/camera_poses/test_camera_L.json
@@ -0,0 +1,226 @@
+[
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.2,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.28750000000000003,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.37500000000000006,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.4625000000000001,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.55,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.6375000000000002,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.7250000000000001,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.8125000000000002,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.9000000000000001,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.9875000000000003,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 1.0750000000000002,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 1.1625000000000003,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 1.2500000000000002,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 1.3375000000000001,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 1.4250000000000003,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 1.5125000000000004,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ]
+]
\ No newline at end of file
diff --git a/examples/camera_poses/test_camera_O.json b/examples/camera_poses/test_camera_O.json
new file mode 100644
index 0000000000000000000000000000000000000000..b0bacc0cbf544e1fc4ee96047bd18e6cc8da0e9c
--- /dev/null
+++ b/examples/camera_poses/test_camera_O.json
@@ -0,0 +1,226 @@
+[
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.2
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.28750000000000003
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.37500000000000006
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.4625000000000001
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.55
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.6375000000000002
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.7250000000000001
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.8125000000000002
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.9000000000000001
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.9875000000000003
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 1.0750000000000002
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 1.1625000000000003
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 1.2500000000000002
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 1.3375000000000001
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 1.4250000000000003
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 1.5125000000000004
+ ]
+]
\ No newline at end of file
diff --git a/examples/camera_poses/test_camera_O_0.2x.json b/examples/camera_poses/test_camera_O_0.2x.json
new file mode 100644
index 0000000000000000000000000000000000000000..689535fb82ffc79c2ef0123a42a9b3c1b2dca5a3
--- /dev/null
+++ b/examples/camera_poses/test_camera_O_0.2x.json
@@ -0,0 +1,226 @@
+[
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.022500000000000003
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.045000000000000005
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0675
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.09000000000000001
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.11250000000000002
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.135
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.15750000000000003
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.18000000000000002
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.2025
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.22500000000000003
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.24750000000000003
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.27
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.29250000000000004
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.31500000000000006
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.3375
+ ]
+]
\ No newline at end of file
diff --git a/examples/camera_poses/test_camera_O_0.4x.json b/examples/camera_poses/test_camera_O_0.4x.json
new file mode 100644
index 0000000000000000000000000000000000000000..01b6ede93af2e2daecbc325d029046195bed7ac0
--- /dev/null
+++ b/examples/camera_poses/test_camera_O_0.4x.json
@@ -0,0 +1,226 @@
+[
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.045000000000000005
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.09000000000000001
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.135
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.18000000000000002
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.22500000000000003
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.27
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.31500000000000006
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.36000000000000004
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.405
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.45000000000000007
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.49500000000000005
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.54
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.5850000000000001
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.6300000000000001
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.675
+ ]
+]
\ No newline at end of file
diff --git a/examples/camera_poses/test_camera_O_1.0x.json b/examples/camera_poses/test_camera_O_1.0x.json
new file mode 100644
index 0000000000000000000000000000000000000000..4b91d2bf8993e20c20b0d9dc17870e4854aeef9a
--- /dev/null
+++ b/examples/camera_poses/test_camera_O_1.0x.json
@@ -0,0 +1,226 @@
+[
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.1125
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.225
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.3375
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.45
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.5625
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.675
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.7875
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.9
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 1.0125
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 1.125
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 1.2375
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 1.35
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 1.4625000000000001
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 1.575
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 1.6875
+ ]
+]
\ No newline at end of file
diff --git a/examples/camera_poses/test_camera_O_2.0x.json b/examples/camera_poses/test_camera_O_2.0x.json
new file mode 100644
index 0000000000000000000000000000000000000000..5481cc64af88c55ccb3ba8e7ac897ad96fdd88c3
--- /dev/null
+++ b/examples/camera_poses/test_camera_O_2.0x.json
@@ -0,0 +1,226 @@
+[
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.225
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.45
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.675
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.9
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 1.125
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 1.35
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 1.575
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 1.8
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 2.025
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 2.25
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 2.475
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 2.7
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 2.9250000000000003
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 3.15
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 3.375
+ ]
+]
\ No newline at end of file
diff --git a/examples/camera_poses/test_camera_R.json b/examples/camera_poses/test_camera_R.json
new file mode 100644
index 0000000000000000000000000000000000000000..93be7cff1ce3dc0f4663e6394a6bda23c78bba35
--- /dev/null
+++ b/examples/camera_poses/test_camera_R.json
@@ -0,0 +1,226 @@
+[
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.2,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.28750000000000003,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.37500000000000006,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.4625000000000001,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.55,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.6375000000000002,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.7250000000000001,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.8125000000000002,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.9000000000000001,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.9875000000000003,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ -1.0750000000000002,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ -1.1625000000000003,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ -1.2500000000000002,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ -1.3375000000000001,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ -1.4250000000000003,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ -1.5125000000000004,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ]
+]
\ No newline at end of file
diff --git a/examples/camera_poses/test_camera_Round-RI-120.json b/examples/camera_poses/test_camera_Round-RI-120.json
new file mode 100644
index 0000000000000000000000000000000000000000..1798456ed380de19d1711035fea74d57c33ebb4e
--- /dev/null
+++ b/examples/camera_poses/test_camera_Round-RI-120.json
@@ -0,0 +1,226 @@
+[
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 1.8
+ ],
+ [
+ 0.9914448613738104,
+ 0.0,
+ 0.13052619222005157,
+ 0.13052619222005157,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.13052619222005157,
+ 0.0,
+ 0.9914448613738104,
+ 1.7914448613738103
+ ],
+ [
+ 0.9659258262890683,
+ 0.0,
+ 0.25881904510252074,
+ 0.25881904510252074,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.25881904510252074,
+ 0.0,
+ 0.9659258262890683,
+ 1.7659258262890685
+ ],
+ [
+ 0.9238795325112867,
+ 0.0,
+ 0.3826834323650898,
+ 0.3826834323650898,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.3826834323650898,
+ 0.0,
+ 0.9238795325112867,
+ 1.7238795325112868
+ ],
+ [
+ 0.8660254037844387,
+ 0.0,
+ 0.49999999999999994,
+ 0.49999999999999994,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.49999999999999994,
+ 0.0,
+ 0.8660254037844387,
+ 1.6660254037844386
+ ],
+ [
+ 0.7933533402912353,
+ 0.0,
+ 0.6087614290087205,
+ 0.6087614290087205,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.6087614290087205,
+ 0.0,
+ 0.7933533402912353,
+ 1.5933533402912352
+ ],
+ [
+ 0.7071067811865476,
+ 0.0,
+ 0.7071067811865476,
+ 0.7071067811865476,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.7071067811865476,
+ 0.0,
+ 0.7071067811865476,
+ 1.5071067811865477
+ ],
+ [
+ 0.6087614290087207,
+ 0.0,
+ 0.7933533402912352,
+ 0.7933533402912352,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.7933533402912352,
+ 0.0,
+ 0.6087614290087207,
+ 1.4087614290087207
+ ],
+ [
+ 0.5000000000000001,
+ 0.0,
+ 0.8660254037844386,
+ 0.8660254037844386,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.8660254037844386,
+ 0.0,
+ 0.5000000000000001,
+ 1.3000000000000003
+ ],
+ [
+ 0.38268343236508984,
+ 0.0,
+ 0.9238795325112867,
+ 0.9238795325112867,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.9238795325112867,
+ 0.0,
+ 0.38268343236508984,
+ 1.1826834323650899
+ ],
+ [
+ 0.25881904510252096,
+ 0.0,
+ 0.9659258262890682,
+ 0.9659258262890682,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.9659258262890682,
+ 0.0,
+ 0.25881904510252096,
+ 1.058819045102521
+ ],
+ [
+ 0.1305261922200517,
+ 0.0,
+ 0.9914448613738104,
+ 0.9914448613738104,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.9914448613738104,
+ 0.0,
+ 0.1305261922200517,
+ 0.9305261922200517
+ ],
+ [
+ 6.123233995736766e-17,
+ 0.0,
+ 1.0,
+ 1.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ -1.0,
+ 0.0,
+ 6.123233995736766e-17,
+ 0.8000000000000002
+ ],
+ [
+ -0.13052619222005138,
+ 0.0,
+ 0.9914448613738105,
+ 0.9914448613738105,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.9914448613738105,
+ 0.0,
+ -0.13052619222005138,
+ 0.6694738077799487
+ ],
+ [
+ -0.25881904510252063,
+ 0.0,
+ 0.9659258262890683,
+ 0.9659258262890683,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.9659258262890683,
+ 0.0,
+ -0.25881904510252063,
+ 0.5411809548974794
+ ],
+ [
+ -0.3826834323650895,
+ 0.0,
+ 0.9238795325112868,
+ 0.9238795325112868,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.9238795325112868,
+ 0.0,
+ -0.3826834323650895,
+ 0.41731656763491054
+ ]
+]
\ No newline at end of file
diff --git a/examples/camera_poses/test_camera_Round-RI.json b/examples/camera_poses/test_camera_Round-RI.json
new file mode 100644
index 0000000000000000000000000000000000000000..0c2c7a00d262c3f3363fa2c8a613a29377b14c25
--- /dev/null
+++ b/examples/camera_poses/test_camera_Round-RI.json
@@ -0,0 +1,226 @@
+[
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 1.7000000000000002
+ ],
+ [
+ 0.9807852804032304,
+ 0.0,
+ 0.19509032201612825,
+ 0.17558128981451543,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.19509032201612825,
+ 0.0,
+ 0.9807852804032304,
+ 1.6827067523629076
+ ],
+ [
+ 0.9238795325112867,
+ 0.0,
+ 0.3826834323650898,
+ 0.3444150891285808,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.3826834323650898,
+ 0.0,
+ 0.9238795325112867,
+ 1.631491579260158
+ ],
+ [
+ 0.8314696123025452,
+ 0.0,
+ 0.5555702330196022,
+ 0.500013209717642,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.5555702330196022,
+ 0.0,
+ 0.8314696123025452,
+ 1.5483226510722907
+ ],
+ [
+ 0.7071067811865476,
+ 0.0,
+ 0.7071067811865476,
+ 0.6363961030678928,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.7071067811865476,
+ 0.0,
+ 0.7071067811865476,
+ 1.436396103067893
+ ],
+ [
+ 0.5555702330196023,
+ 0.0,
+ 0.8314696123025452,
+ 0.7483226510722907,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.8314696123025452,
+ 0.0,
+ 0.5555702330196023,
+ 1.3000132097176422
+ ],
+ [
+ 0.38268343236508984,
+ 0.0,
+ 0.9238795325112867,
+ 0.831491579260158,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.9238795325112867,
+ 0.0,
+ 0.38268343236508984,
+ 1.144415089128581
+ ],
+ [
+ 0.19509032201612833,
+ 0.0,
+ 0.9807852804032304,
+ 0.8827067523629074,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.9807852804032304,
+ 0.0,
+ 0.19509032201612833,
+ 0.9755812898145155
+ ],
+ [
+ 6.123233995736766e-17,
+ 0.0,
+ 1.0,
+ 0.9,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ -1.0,
+ 0.0,
+ 6.123233995736766e-17,
+ 0.8
+ ],
+ [
+ -0.1950903220161282,
+ 0.0,
+ 0.9807852804032304,
+ 0.8827067523629074,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.9807852804032304,
+ 0.0,
+ -0.1950903220161282,
+ 0.6244187101854847
+ ],
+ [
+ -0.3826834323650897,
+ 0.0,
+ 0.9238795325112867,
+ 0.831491579260158,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.9238795325112867,
+ 0.0,
+ -0.3826834323650897,
+ 0.4555849108714193
+ ],
+ [
+ -0.555570233019602,
+ 0.0,
+ 0.8314696123025453,
+ 0.7483226510722908,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.8314696123025453,
+ 0.0,
+ -0.555570233019602,
+ 0.2999867902823583
+ ],
+ [
+ -0.7071067811865475,
+ 0.0,
+ 0.7071067811865476,
+ 0.6363961030678928,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.7071067811865476,
+ 0.0,
+ -0.7071067811865475,
+ 0.1636038969321073
+ ],
+ [
+ -0.8314696123025453,
+ 0.0,
+ 0.5555702330196022,
+ 0.500013209717642,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.5555702330196022,
+ 0.0,
+ -0.8314696123025453,
+ 0.051677348927709255
+ ],
+ [
+ -0.9238795325112867,
+ 0.0,
+ 0.3826834323650899,
+ 0.34441508912858093,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.3826834323650899,
+ 0.0,
+ -0.9238795325112867,
+ -0.031491579260158
+ ],
+ [
+ -0.9807852804032304,
+ 0.0,
+ 0.1950903220161286,
+ 0.17558128981451576,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.1950903220161286,
+ 0.0,
+ -0.9807852804032304,
+ -0.08270675236290737
+ ]
+]
\ No newline at end of file
diff --git a/examples/camera_poses/test_camera_Round-RI_90.json b/examples/camera_poses/test_camera_Round-RI_90.json
new file mode 100644
index 0000000000000000000000000000000000000000..a817879cc2b5650fbde1dbb20262086b7a7e0ad8
--- /dev/null
+++ b/examples/camera_poses/test_camera_Round-RI_90.json
@@ -0,0 +1,226 @@
+[
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 1.7000000000000002
+ ],
+ [
+ 0.9951847266721969,
+ 0.0,
+ 0.0980171403295606,
+ 0.08821542629660455,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.0980171403295606,
+ 0.0,
+ 0.9951847266721969,
+ 1.6956662540049772
+ ],
+ [
+ 0.9807852804032304,
+ 0.0,
+ 0.19509032201612825,
+ 0.17558128981451543,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.19509032201612825,
+ 0.0,
+ 0.9807852804032304,
+ 1.6827067523629076
+ ],
+ [
+ 0.9569403357322088,
+ 0.0,
+ 0.29028467725446233,
+ 0.2612562095290161,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.29028467725446233,
+ 0.0,
+ 0.9569403357322088,
+ 1.661246302158988
+ ],
+ [
+ 0.9238795325112867,
+ 0.0,
+ 0.3826834323650898,
+ 0.3444150891285808,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.3826834323650898,
+ 0.0,
+ 0.9238795325112867,
+ 1.631491579260158
+ ],
+ [
+ 0.881921264348355,
+ 0.0,
+ 0.47139673682599764,
+ 0.4242570631433979,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.47139673682599764,
+ 0.0,
+ 0.881921264348355,
+ 1.5937291379135194
+ ],
+ [
+ 0.8314696123025452,
+ 0.0,
+ 0.5555702330196022,
+ 0.500013209717642,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.5555702330196022,
+ 0.0,
+ 0.8314696123025452,
+ 1.5483226510722907
+ ],
+ [
+ 0.773010453362737,
+ 0.0,
+ 0.6343932841636455,
+ 0.5709539557472809,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.6343932841636455,
+ 0.0,
+ 0.773010453362737,
+ 1.4957094080264635
+ ],
+ [
+ 0.7071067811865476,
+ 0.0,
+ 0.7071067811865476,
+ 0.6363961030678928,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.7071067811865476,
+ 0.0,
+ 0.7071067811865476,
+ 1.436396103067893
+ ],
+ [
+ 0.6343932841636455,
+ 0.0,
+ 0.7730104533627369,
+ 0.6957094080264632,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.7730104533627369,
+ 0.0,
+ 0.6343932841636455,
+ 1.370953955747281
+ ],
+ [
+ 0.5555702330196023,
+ 0.0,
+ 0.8314696123025452,
+ 0.7483226510722907,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.8314696123025452,
+ 0.0,
+ 0.5555702330196023,
+ 1.3000132097176422
+ ],
+ [
+ 0.4713967368259978,
+ 0.0,
+ 0.8819212643483549,
+ 0.7937291379135195,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.8819212643483549,
+ 0.0,
+ 0.4713967368259978,
+ 1.2242570631433982
+ ],
+ [
+ 0.38268343236508984,
+ 0.0,
+ 0.9238795325112867,
+ 0.831491579260158,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.9238795325112867,
+ 0.0,
+ 0.38268343236508984,
+ 1.144415089128581
+ ],
+ [
+ 0.29028467725446233,
+ 0.0,
+ 0.9569403357322089,
+ 0.861246302158988,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.9569403357322089,
+ 0.0,
+ 0.29028467725446233,
+ 1.0612562095290161
+ ],
+ [
+ 0.19509032201612833,
+ 0.0,
+ 0.9807852804032304,
+ 0.8827067523629074,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.9807852804032304,
+ 0.0,
+ 0.19509032201612833,
+ 0.9755812898145155
+ ],
+ [
+ 0.09801714032956077,
+ 0.0,
+ 0.9951847266721968,
+ 0.8956662540049771,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.9951847266721968,
+ 0.0,
+ 0.09801714032956077,
+ 0.8882154262966048
+ ]
+]
\ No newline at end of file
diff --git a/examples/camera_poses/test_camera_Round-ZoomIn.json b/examples/camera_poses/test_camera_Round-ZoomIn.json
new file mode 100644
index 0000000000000000000000000000000000000000..85eccf2144a24125ba418c778ff7fb783a71f050
--- /dev/null
+++ b/examples/camera_poses/test_camera_Round-ZoomIn.json
@@ -0,0 +1,226 @@
+[
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.81
+ ],
+ [
+ 0.9807852804032304,
+ 0.0,
+ 0.19509032201612825,
+ 0.0019509032201612826,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.19509032201612825,
+ 0.0,
+ 0.9807852804032304,
+ 0.8098078528040323
+ ],
+ [
+ 0.9238795325112867,
+ 0.0,
+ 0.3826834323650898,
+ 0.003826834323650898,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.3826834323650898,
+ 0.0,
+ 0.9238795325112867,
+ 0.8092387953251129
+ ],
+ [
+ 0.8314696123025452,
+ 0.0,
+ 0.5555702330196022,
+ 0.005555702330196022,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.5555702330196022,
+ 0.0,
+ 0.8314696123025452,
+ 0.8083146961230255
+ ],
+ [
+ 0.7071067811865476,
+ 0.0,
+ 0.7071067811865476,
+ 0.007071067811865476,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.7071067811865476,
+ 0.0,
+ 0.7071067811865476,
+ 0.8070710678118656
+ ],
+ [
+ 0.5555702330196023,
+ 0.0,
+ 0.8314696123025452,
+ 0.008314696123025453,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.8314696123025452,
+ 0.0,
+ 0.5555702330196023,
+ 0.805555702330196
+ ],
+ [
+ 0.38268343236508984,
+ 0.0,
+ 0.9238795325112867,
+ 0.009238795325112868,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.9238795325112867,
+ 0.0,
+ 0.38268343236508984,
+ 0.803826834323651
+ ],
+ [
+ 0.19509032201612833,
+ 0.0,
+ 0.9807852804032304,
+ 0.009807852804032305,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.9807852804032304,
+ 0.0,
+ 0.19509032201612833,
+ 0.8019509032201614
+ ],
+ [
+ 0.19509032201612833,
+ 0.0,
+ 0.9807852804032304,
+ 0.009807852804032305,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.9807852804032304,
+ 0.0,
+ 0.19509032201612833,
+ 0.8019509032201614
+ ],
+ [
+ 0.19509032201612833,
+ 0.0,
+ 0.9807852804032304,
+ 0.009807852804032305,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.9807852804032304,
+ 0.0,
+ 0.19509032201612833,
+ 0.7019509032201614
+ ],
+ [
+ 0.19509032201612833,
+ 0.0,
+ 0.9807852804032304,
+ 0.009807852804032305,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.9807852804032304,
+ 0.0,
+ 0.19509032201612833,
+ 0.6019509032201614
+ ],
+ [
+ 0.19509032201612833,
+ 0.0,
+ 0.9807852804032304,
+ 0.009807852804032305,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.9807852804032304,
+ 0.0,
+ 0.19509032201612833,
+ 0.5019509032201613
+ ],
+ [
+ 0.19509032201612833,
+ 0.0,
+ 0.9807852804032304,
+ 0.009807852804032305,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.9807852804032304,
+ 0.0,
+ 0.19509032201612833,
+ 0.4019509032201613
+ ],
+ [
+ 0.19509032201612833,
+ 0.0,
+ 0.9807852804032304,
+ 0.009807852804032305,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.9807852804032304,
+ 0.0,
+ 0.19509032201612833,
+ 0.3019509032201613
+ ],
+ [
+ 0.19509032201612833,
+ 0.0,
+ 0.9807852804032304,
+ 0.009807852804032305,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.9807852804032304,
+ 0.0,
+ 0.19509032201612833,
+ 0.2019509032201613
+ ],
+ [
+ 0.19509032201612833,
+ 0.0,
+ 0.9807852804032304,
+ 0.009807852804032305,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ -0.9807852804032304,
+ 0.0,
+ 0.19509032201612833,
+ 0.10195090322016129
+ ]
+]
\ No newline at end of file
diff --git a/examples/camera_poses/test_camera_SPIN-ACW-60.json b/examples/camera_poses/test_camera_SPIN-ACW-60.json
new file mode 100644
index 0000000000000000000000000000000000000000..647ab13af36b35c8a47ae2a6edc3154b3418b114
--- /dev/null
+++ b/examples/camera_poses/test_camera_SPIN-ACW-60.json
@@ -0,0 +1,226 @@
+[
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 0.9978589232386035,
+ -0.06540312923014306,
+ 0.0,
+ 0.0,
+ 0.06540312923014306,
+ 0.9978589232386035,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 0.9914448613738104,
+ -0.13052619222005157,
+ 0.0,
+ 0.0,
+ 0.13052619222005157,
+ 0.9914448613738104,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 0.9807852804032304,
+ -0.19509032201612825,
+ 0.0,
+ 0.0,
+ 0.19509032201612825,
+ 0.9807852804032304,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 0.9659258262890683,
+ -0.25881904510252074,
+ 0.0,
+ 0.0,
+ 0.25881904510252074,
+ 0.9659258262890683,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 0.9469301294951057,
+ -0.32143946530316153,
+ 0.0,
+ 0.0,
+ 0.32143946530316153,
+ 0.9469301294951057,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 0.9238795325112867,
+ -0.3826834323650898,
+ 0.0,
+ 0.0,
+ 0.3826834323650898,
+ 0.9238795325112867,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 0.8968727415326884,
+ -0.44228869021900125,
+ 0.0,
+ 0.0,
+ 0.44228869021900125,
+ 0.8968727415326884,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 0.8660254037844387,
+ -0.49999999999999994,
+ 0.0,
+ 0.0,
+ 0.49999999999999994,
+ 0.8660254037844387,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 0.8314696123025452,
+ -0.5555702330196022,
+ 0.0,
+ 0.0,
+ 0.5555702330196022,
+ 0.8314696123025452,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 0.7933533402912353,
+ -0.6087614290087205,
+ 0.0,
+ 0.0,
+ 0.6087614290087205,
+ 0.7933533402912353,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 0.7518398074789774,
+ -0.6593458151000688,
+ 0.0,
+ 0.0,
+ 0.6593458151000688,
+ 0.7518398074789774,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 0.7071067811865476,
+ -0.7071067811865476,
+ 0.0,
+ 0.0,
+ 0.7071067811865476,
+ 0.7071067811865476,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 0.659345815100069,
+ -0.7518398074789773,
+ 0.0,
+ 0.0,
+ 0.7518398074789773,
+ 0.659345815100069,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 0.6087614290087207,
+ -0.7933533402912352,
+ 0.0,
+ 0.0,
+ 0.7933533402912352,
+ 0.6087614290087207,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 0.5555702330196024,
+ -0.8314696123025451,
+ 0.0,
+ 0.0,
+ 0.8314696123025451,
+ 0.5555702330196024,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ]
+]
\ No newline at end of file
diff --git a/examples/camera_poses/test_camera_SPIN-CW-60.json b/examples/camera_poses/test_camera_SPIN-CW-60.json
new file mode 100644
index 0000000000000000000000000000000000000000..bab5e326a69c7ff99d562281bcf6873af0ff242b
--- /dev/null
+++ b/examples/camera_poses/test_camera_SPIN-CW-60.json
@@ -0,0 +1,226 @@
+[
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 0.9978589232386035,
+ 0.06540312923014306,
+ 0.0,
+ 0.0,
+ -0.06540312923014306,
+ 0.9978589232386035,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 0.9914448613738104,
+ 0.13052619222005157,
+ 0.0,
+ 0.0,
+ -0.13052619222005157,
+ 0.9914448613738104,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 0.9807852804032304,
+ 0.19509032201612825,
+ 0.0,
+ 0.0,
+ -0.19509032201612825,
+ 0.9807852804032304,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 0.9659258262890683,
+ 0.25881904510252074,
+ 0.0,
+ 0.0,
+ -0.25881904510252074,
+ 0.9659258262890683,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 0.9469301294951057,
+ 0.32143946530316153,
+ 0.0,
+ 0.0,
+ -0.32143946530316153,
+ 0.9469301294951057,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 0.9238795325112867,
+ 0.3826834323650898,
+ 0.0,
+ 0.0,
+ -0.3826834323650898,
+ 0.9238795325112867,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 0.8968727415326884,
+ 0.44228869021900125,
+ 0.0,
+ 0.0,
+ -0.44228869021900125,
+ 0.8968727415326884,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 0.8660254037844387,
+ 0.49999999999999994,
+ 0.0,
+ 0.0,
+ -0.49999999999999994,
+ 0.8660254037844387,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 0.8314696123025452,
+ 0.5555702330196022,
+ 0.0,
+ 0.0,
+ -0.5555702330196022,
+ 0.8314696123025452,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 0.7933533402912353,
+ 0.6087614290087205,
+ 0.0,
+ 0.0,
+ -0.6087614290087205,
+ 0.7933533402912353,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 0.7518398074789774,
+ 0.6593458151000688,
+ 0.0,
+ 0.0,
+ -0.6593458151000688,
+ 0.7518398074789774,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 0.7071067811865476,
+ 0.7071067811865476,
+ 0.0,
+ 0.0,
+ -0.7071067811865476,
+ 0.7071067811865476,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 0.659345815100069,
+ 0.7518398074789773,
+ 0.0,
+ 0.0,
+ -0.7518398074789773,
+ 0.659345815100069,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 0.6087614290087207,
+ 0.7933533402912352,
+ 0.0,
+ 0.0,
+ -0.7933533402912352,
+ 0.6087614290087207,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 0.5555702330196024,
+ 0.8314696123025451,
+ 0.0,
+ 0.0,
+ -0.8314696123025451,
+ 0.5555702330196024,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ]
+]
\ No newline at end of file
diff --git a/examples/camera_poses/test_camera_U.json b/examples/camera_poses/test_camera_U.json
new file mode 100644
index 0000000000000000000000000000000000000000..f63aabf1e10d52d9770727e75c659bf1ae2f3d16
--- /dev/null
+++ b/examples/camera_poses/test_camera_U.json
@@ -0,0 +1,226 @@
+[
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.2,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.28750000000000003,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.37500000000000006,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.4625000000000001,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.55,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.6375000000000002,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.7250000000000001,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.8125000000000002,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.9000000000000001,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.9875000000000003,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 1.0750000000000002,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 1.1625000000000003,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 1.2500000000000002,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 1.3375000000000001,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 1.4250000000000003,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ],
+ [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 1.5125000000000004,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0
+ ]
+]
\ No newline at end of file
diff --git a/examples/camera_poses/test_camera_b133a504fc90a2d1.json b/examples/camera_poses/test_camera_b133a504fc90a2d1.json
new file mode 100644
index 0000000000000000000000000000000000000000..b9df09dde068f9316c0db51ead1ad6cdd3dc5628
--- /dev/null
+++ b/examples/camera_poses/test_camera_b133a504fc90a2d1.json
@@ -0,0 +1 @@
+[[0.9999999403953552, -3.2563843288535566e-10, 8.624932434919685e-10, -5.431840754965833e-09, -3.2563843288535566e-10, 1.0, -7.078895802870022e-10, -2.678919752696629e-09, 8.624932434919685e-10, -7.078895802870022e-10, 1.0, 7.303774474110014e-09], [0.9999998807907104, 0.00026603759033605456, -0.0003414043167140335, -0.030107486993074417, -0.0002659278397914022, 0.9999999403953552, 0.00032293255208060145, 0.011978899128735065, 0.0003414914826862514, -0.0003228419227525592, 0.9999999403953552, -0.07893969118595123], [0.9999994039535522, -0.0006866907933726907, -0.0008186722989194095, -0.050785429775714874, 0.0006877407431602478, 0.9999989867210388, 0.0012827541213482618, 0.023323407396674156, 0.0008177922572940588, -0.0012833180371671915, 0.9999988675117493, -0.1486724615097046], [0.999999463558197, -0.0005364732351154089, -0.0008647883078083396, -0.0673225075006485, 0.0005379383219406009, 0.9999984502792358, 0.0016958877677097917, 0.03169107437133789, 0.0008638793369755149, -0.0016963522648438811, 0.9999982118606567, -0.21477271616458893], [0.9999995231628418, -0.0005853328038938344, 0.000731398060452193, -0.08539554476737976, 0.0005843221442773938, 0.9999988675117493, 0.0013807439245283604, 0.037947509437799454, -0.0007322035962715745, -0.0013803173787891865, 0.9999987483024597, -0.2858566641807556], [0.9999935030937195, -0.0007727851625531912, 0.00352613371796906, -0.10591986775398254, 0.0007684561423957348, 0.9999989867210388, 0.0012290359009057283, 0.0426139310002327, -0.003527079476043582, -0.0012263187672942877, 0.999993085861206, -0.3645589053630829], [0.9999805688858032, -0.0012497249990701675, 0.006103655323386192, -0.12257411330938339, 0.0012419418198987842, 0.9999984502792358, 0.001278668874874711, 0.05143251642584801, -0.006105243694037199, -0.0012710647424682975, 0.9999805688858032, -0.44212815165519714], [0.9999697804450989, -0.001364423311315477, 0.0076533216051757336, -0.13916294276714325, 0.0013530527940019965, 0.9999980330467224, 0.0014907552395015955, 0.06076823174953461, -0.0076553407125175, -0.0014803558588027954, 0.9999696016311646, -0.5131306648254395], [0.9999656081199646, -0.001309191924519837, 0.00818517804145813, -0.1577269434928894, 0.0012902054004371166, 0.9999964833259583, 0.0023244714830070734, 0.07221967726945877, -0.008188189007341862, -0.0023138325195759535, 0.9999638199806213, -0.5706046223640442], [0.9999715089797974, -0.000632039678748697, 0.0075194560922682285, -0.1842648684978485, 0.0006101227481849492, 0.9999955892562866, 0.002916603581979871, 0.0780157595872879, -0.0075212628580629826, -0.0029119334649294615, 0.9999675154685974, -0.6207911372184753], [0.999971330165863, 9.749359742272645e-05, 0.007570990361273289, -0.2200128734111786, -0.00012177121971035376, 0.9999948740005493, 0.0032062893733382225, 0.07083319127559662, -0.007570638321340084, -0.003207120578736067, 0.9999662041664124, -0.671477735042572], [0.9999842047691345, 0.0011085873702540994, 0.005505275446921587, -0.265299528837204, -0.0011242963373661041, 0.9999953508377075, 0.002851187251508236, 0.06430258601903915, -0.00550208892673254, -0.002857332583516836, 0.9999808073043823, -0.7294802069664001], [0.9999891519546509, 0.0030521126464009285, -0.003507567336782813, -0.3109421133995056, -0.0030410285107791424, 0.9999904632568359, 0.003161099273711443, 0.06503432989120483, 0.003517185803502798, -0.0031503995414823294, 0.999988853931427, -0.7917969226837158], [0.9995473623275757, 0.00647346256300807, -0.029379382729530334, -0.3455933630466461, -0.006376372650265694, 0.9999739527702332, 0.0033971993252635, 0.06981948018074036, 0.02940060943365097, -0.003208327107131481, 0.9995625615119934, -0.8474093675613403], [0.9966378808021545, 0.011493867263197899, -0.08112204819917679, -0.3555213510990143, -0.011167873628437519, 0.9999276399612427, 0.004471173509955406, 0.0734858587384224, 0.08116757124662399, -0.00355018163099885, 0.9966941475868225, -0.9062771201133728], [0.9889613389968872, 0.01762101612985134, -0.14712226390838623, -0.33937495946884155, -0.01693679392337799, 0.999839186668396, 0.0059022014029324055, 0.0776127353310585, 0.14720259606838226, -0.0033452697098255157, 0.9891006946563721, -0.9548948407173157]]
\ No newline at end of file
diff --git a/examples/camera_poses/test_camera_d9642c8efc01481d.json b/examples/camera_poses/test_camera_d9642c8efc01481d.json
new file mode 100644
index 0000000000000000000000000000000000000000..50f031204bcc0bbde6758ad34f091e87b072ca45
--- /dev/null
+++ b/examples/camera_poses/test_camera_d9642c8efc01481d.json
@@ -0,0 +1 @@
+[[1.0, -1.4532828274127496e-09, 3.928266045782891e-10, -8.700192566379883e-09, -1.4532828274127496e-09, 1.0, -1.7456260048565042e-10, 9.261455491405002e-11, 3.928266045782891e-10, -1.7456260048565042e-10, 1.0, -1.5881864712241622e-08], [0.9850640296936035, -0.04082970321178436, 0.16727784276008606, 0.20439539849758148, 0.03502606600522995, 0.9986825585365295, 0.03750050067901611, -0.15185177326202393, -0.16858860850334167, -0.03108130767941475, 0.9851963520050049, 0.10121102631092072], [0.9168016910552979, -0.09482394903898239, 0.387921541929245, 0.44365406036376953, 0.06679922342300415, 0.9941277503967285, 0.08513444662094116, -0.26796984672546387, -0.39371633529663086, -0.0521385557949543, 0.9177521467208862, 0.06753730028867722], [0.7643709182739258, -0.15802493691444397, 0.6251122951507568, 0.6479341983795166, 0.09576083719730377, 0.9865723252296448, 0.13230620324611664, -0.33551496267318726, -0.6376261115074158, -0.04126973822712898, 0.7692397236824036, -0.07632352411746979], [0.5624101758003235, -0.2065712958574295, 0.8006392121315002, 0.8095709085464478, 0.10458854585886002, 0.9782856106758118, 0.17893710732460022, -0.3449772298336029, -0.8202170729637146, -0.016898371279239655, 0.5718027949333191, -0.267223596572876], [0.3860713243484497, -0.23765023052692413, 0.8913311958312988, 1.017128586769104, 0.10842984914779663, 0.9712379574775696, 0.21198998391628265, -0.34939509630203247, -0.9160742163658142, 0.014803661964833736, 0.4007355272769928, -0.5046621561050415], [0.25270596146583557, -0.2560441493988037, 0.9330493807792664, 1.2611535787582397, 0.09987718611955643, 0.9661006331443787, 0.23806333541870117, -0.36809343099594116, -0.9623742699623108, 0.03303031623363495, 0.26971235871315, -0.8164812922477722], [0.12896282970905304, -0.26742202043533325, 0.9549105167388916, 1.4084848165512085, 0.09037449955940247, 0.9621138572692871, 0.25723403692245483, -0.3597045838832855, -0.9875227212905884, 0.05312592536211014, 0.14824506640434265, -1.1886308193206787], [-0.037818778306245804, -0.2752484083175659, 0.9606289863586426, 1.3755683898925781, 0.08146493136882782, 0.957267701625824, 0.277492493391037, -0.353816956281662, -0.9959584474563599, 0.08875200152397156, -0.013779602944850922, -1.6891316175460815], [-0.1970304548740387, -0.2752428948879242, 0.9409677982330322, 1.1786020994186401, 0.07280438393354416, 0.9530242681503296, 0.2940141260623932, -0.36850038170814514, -0.9776904582977295, 0.12643630802631378, -0.16773590445518494, -2.261430025100708], [-0.3677733540534973, -0.26668044924736023, 0.8908559679985046, 0.8089978098869324, 0.06243090331554413, 0.9487544894218445, 0.30978602170944214, -0.37012383341789246, -0.9278174042701721, 0.16954797506332397, -0.33227747678756714, -2.8139760494232178], [-0.5150132775306702, -0.2527574300765991, 0.8190696835517883, 0.4462648332118988, 0.050335872918367386, 0.9449706673622131, 0.32325950264930725, -0.381427526473999, -0.8557030558586121, 0.20771150290966034, -0.473949670791626, -3.2886314392089844], [-0.6352092623710632, -0.23657281696796417, 0.7352160215377808, 0.0826139897108078, 0.036419764161109924, 0.9416990280151367, 0.33447936177253723, -0.3719184398651123, -0.771480917930603, 0.23924078047275543, -0.5895600318908691, -3.677316904067993], [-0.7218965888023376, -0.21918001770973206, 0.6563730239868164, -0.2607730031013489, 0.024064550176262856, 0.9399895071983337, 0.340353786945343, -0.359468549489975, -0.6915825009346008, 0.26149556040763855, -0.6733006834983826, -3.9900803565979004], [-0.7831082344055176, -0.2019210308790207, 0.5881916880607605, -0.609000563621521, 0.015634668990969658, 0.9391284584999084, 0.3432103097438812, -0.35386255383491516, -0.621688961982727, 0.2779669761657715, -0.732282280921936, -4.316582202911377], [-0.8348898887634277, -0.1848600059747696, 0.5184455513954163, -0.9689992070198059, 0.007868430577218533, 0.93780916929245, 0.3470619320869446, -0.3402447998523712, -0.5503608584403992, 0.2938378155231476, -0.7815127968788147, -4.561704635620117]]
\ No newline at end of file
diff --git a/examples/camera_poses/test_camera_d971457c81bca597.json b/examples/camera_poses/test_camera_d971457c81bca597.json
new file mode 100644
index 0000000000000000000000000000000000000000..3bd9bf5dd6993fd3b7fe6d678595060378a3c997
--- /dev/null
+++ b/examples/camera_poses/test_camera_d971457c81bca597.json
@@ -0,0 +1 @@
+[[1.0, -1.9455232563858615e-11, -8.611562019034125e-10, -1.0473515388298438e-09, -1.9455232563858615e-11, 1.0, 8.674055917978762e-10, 1.8375034827045056e-09, -8.611562019034125e-10, 8.674055917978762e-10, 1.0, 8.45981773522908e-09], [0.9973401427268982, -0.0032562706619501114, 0.07281485944986343, -0.07197967171669006, 0.00329946493729949, 0.9999944567680359, -0.00047293686657212675, -0.0565447174012661, -0.07281292229890823, 0.0007119301008060575, 0.9973453879356384, -0.3188611567020416], [0.9906007051467896, -0.0066957552917301655, 0.13662146031856537, -0.15415722131729126, 0.006810691673308611, 0.9999766945838928, -0.00037385127507150173, -0.10014614462852478, -0.1366157978773117, 0.0013008243404328823, 0.9906232953071594, -0.6077051758766174], [0.9827210903167725, -0.009423106908798218, 0.18485280871391296, -0.23053960502147675, 0.009786692447960377, 0.9999515414237976, -0.0010545575059950352, -0.11272216588258743, -0.18483391404151917, 0.002845433307811618, 0.9827656745910645, -0.8897562623023987], [0.9756309986114502, -0.011318936944007874, 0.2191258817911148, -0.2929331362247467, 0.01199379749596119, 0.9999265670776367, -0.0017497432418167591, -0.10348402708768845, -0.21908999979496002, 0.004335256293416023, 0.9756950736045837, -1.1368639469146729], [0.9685831069946289, -0.012191502377390862, 0.24839124083518982, -0.379209041595459, 0.013217172585427761, 0.9999096393585205, -0.0024619612377136946, -0.12078691273927689, -0.24833877384662628, 0.005667644087225199, 0.9686566591262817, -1.3666095733642578], [0.9615083932876587, -0.012519675306975842, 0.2744903266429901, -0.5242342352867126, 0.013806014321744442, 0.9999009370803833, -0.0027547888457775116, -0.13015854358673096, -0.2744286358356476, 0.006438371259719133, 0.9615859389305115, -1.5762972831726074], [0.9528889656066895, -0.014083069749176502, 0.3029923439025879, -0.6702165007591248, 0.015383570455014706, 0.9998798370361328, -0.0019058430334553123, -0.14860114455223083, -0.3029291331768036, 0.00647716224193573, 0.9529911279678345, -1.7173497676849365], [0.9457509517669678, -0.015159872360527515, 0.3245387375354767, -0.8001917600631714, 0.016729505732655525, 0.9998579621315002, -0.0020466779824346304, -0.15521110594272614, -0.32446160912513733, 0.007365020923316479, 0.9458702206611633, -1.8571592569351196], [0.9417706727981567, -0.015540024265646935, 0.33589670062065125, -0.9244012236595154, 0.017394419759511948, 0.9998455047607422, -0.0025124624371528625, -0.1416105479001999, -0.3358057737350464, 0.008208892308175564, 0.9418954849243164, -1.9969842433929443], [0.9381415247917175, -0.016401933506131172, 0.34586337208747864, -1.0128529071807861, 0.01851990446448326, 0.9998245239257812, -0.0028197101783007383, -0.11503250896930695, -0.3457564413547516, 0.009050644934177399, 0.9382806420326233, -2.080850124359131], [0.9357938766479492, -0.016873901709914207, 0.3521435558795929, -1.1008079051971436, 0.01865064539015293, 0.9998247027397156, -0.0016533475136384368, -0.048780668526887894, -0.3520539104938507, 0.008114897646009922, 0.9359445571899414, -2.088500499725342], [0.9334627985954285, -0.016492612659931183, 0.3582947850227356, -1.2417148351669312, 0.017931735143065453, 0.9998390078544617, -0.0006939812446944416, 0.01625901833176613, -0.35822567343711853, 0.007072653621435165, 0.9336082339286804, -2.0250792503356934], [0.9281281232833862, -0.016213543713092804, 0.3719078302383423, -1.4365860223770142, 0.01746317930519581, 0.9998475313186646, 8.084020009846427e-06, 0.060201361775398254, -0.37185123562812805, 0.006487190257757902, 0.9282696843147278, -1.8963005542755127], [0.9220678806304932, -0.017285069450736046, 0.3866421580314636, -1.604330062866211, 0.01880805380642414, 0.9998230934143066, -0.00015593231364618987, 0.0799601748585701, -0.38657107949256897, 0.007415766827762127, 0.9222298264503479, -1.7388361692428589], [0.9185494184494019, -0.018356993794441223, 0.3948797583580017, -1.7530856132507324, 0.019847355782985687, 0.9998030066490173, 0.0003104731731582433, 0.10000917315483093, -0.3948076665401459, 0.007552135270088911, 0.9187328219413757, -1.5337872505187988]]
\ No newline at end of file
diff --git a/examples/trajectories/curve_1.txt b/examples/trajectories/curve_1.txt
new file mode 100644
index 0000000000000000000000000000000000000000..87e0ef6929bf9dbb1cba7f2bd12ce8a8ab5d592e
--- /dev/null
+++ b/examples/trajectories/curve_1.txt
@@ -0,0 +1,59 @@
+88, 173
+89, 173
+91, 173
+92, 173
+93, 173
+93, 174
+95, 175
+97, 176
+98, 176
+100, 178
+103, 180
+104, 181
+105, 181
+106, 182
+107, 182
+108, 182
+110, 184
+111, 185
+113, 186
+115, 186
+116, 187
+116, 188
+119, 189
+122, 190
+125, 191
+128, 192
+129, 192
+130, 192
+133, 193
+134, 193
+140, 194
+146, 194
+150, 194
+151, 194
+153, 194
+155, 194
+156, 194
+157, 194
+158, 194
+159, 194
+162, 193
+165, 192
+168, 191
+169, 190
+170, 190
+172, 189
+173, 188
+173, 187
+174, 187
+175, 186
+178, 185
+179, 183
+180, 183
+181, 183
+183, 181
+185, 180
+185, 179
+185, 179
+185, 179
diff --git a/examples/trajectories/curve_2.txt b/examples/trajectories/curve_2.txt
new file mode 100644
index 0000000000000000000000000000000000000000..f1b896e725a273156d0fe572337f4c7bffcf1c41
--- /dev/null
+++ b/examples/trajectories/curve_2.txt
@@ -0,0 +1,80 @@
+206, 146
+206, 147
+205, 149
+204, 151
+203, 151
+202, 154
+201, 156
+200, 159
+199, 161
+198, 163
+197, 164
+197, 165
+197, 166
+195, 168
+193, 171
+191, 173
+189, 176
+188, 177
+187, 178
+187, 179
+186, 180
+185, 181
+184, 181
+184, 182
+182, 184
+180, 186
+179, 187
+177, 189
+175, 191
+174, 191
+173, 192
+172, 193
+171, 193
+169, 195
+167, 197
+164, 198
+161, 200
+160, 201
+158, 202
+156, 204
+155, 204
+154, 204
+153, 205
+151, 206
+150, 206
+149, 206
+147, 207
+146, 207
+143, 209
+139, 210
+138, 210
+135, 211
+135, 212
+134, 212
+133, 212
+132, 212
+131, 212
+130, 212
+129, 212
+128, 212
+127, 212
+126, 213
+124, 213
+122, 213
+120, 213
+120, 214
+119, 214
+118, 214
+116, 214
+115, 214
+114, 214
+113, 214
+112, 214
+111, 214
+110, 214
+110, 215
+109, 215
+108, 215
+108, 215
+108, 215
diff --git a/examples/trajectories/curve_3.txt b/examples/trajectories/curve_3.txt
new file mode 100644
index 0000000000000000000000000000000000000000..0456a0fbe712a29bb3e4c7edc46b678c64221f11
--- /dev/null
+++ b/examples/trajectories/curve_3.txt
@@ -0,0 +1,150 @@
+73, 149
+74, 149
+76, 149
+82, 149
+83, 149
+90, 149
+98, 149
+102, 149
+104, 149
+105, 149
+106, 150
+108, 152
+111, 154
+114, 157
+116, 158
+117, 160
+118, 161
+119, 164
+121, 166
+122, 168
+122, 169
+123, 171
+123, 172
+124, 174
+125, 177
+126, 179
+126, 181
+126, 183
+126, 184
+126, 185
+127, 186
+127, 187
+127, 188
+127, 189
+127, 190
+127, 191
+128, 192
+128, 193
+129, 194
+130, 196
+130, 197
+131, 198
+131, 199
+134, 201
+135, 202
+137, 203
+138, 204
+139, 204
+139, 205
+140, 206
+142, 206
+142, 207
+147, 209
+151, 211
+153, 212
+154, 212
+156, 212
+158, 213
+159, 214
+161, 214
+162, 214
+163, 214
+164, 214
+165, 214
+167, 214
+168, 214
+169, 214
+170, 214
+171, 214
+172, 213
+173, 213
+175, 212
+176, 212
+177, 212
+178, 211
+179, 211
+179, 208
+182, 205
+184, 203
+184, 202
+186, 200
+187, 199
+187, 198
+188, 196
+190, 194
+192, 191
+193, 189
+193, 188
+194, 188
+194, 187
+195, 184
+196, 183
+197, 182
+197, 180
+198, 180
+198, 179
+199, 178
+199, 177
+200, 176
+200, 175
+201, 174
+202, 173
+203, 171
+204, 170
+204, 169
+205, 169
+205, 167
+207, 165
+208, 163
+209, 163
+209, 162
+210, 162
+211, 162
+212, 162
+213, 162
+215, 162
+216, 162
+217, 163
+219, 164
+220, 164
+221, 165
+223, 166
+224, 166
+224, 167
+225, 167
+225, 168
+226, 169
+227, 171
+228, 173
+228, 174
+229, 175
+229, 176
+229, 177
+229, 180
+229, 181
+229, 182
+229, 183
+229, 184
+229, 185
+230, 186
+230, 187
+230, 187
+230, 189
+224, 192
+223, 193
+220, 194
+219, 195
+218, 195
+218, 195
+218, 195
diff --git a/examples/trajectories/curve_4.txt b/examples/trajectories/curve_4.txt
new file mode 100644
index 0000000000000000000000000000000000000000..e9404339b1006c3b63fbe11a797ab76e39a5b996
--- /dev/null
+++ b/examples/trajectories/curve_4.txt
@@ -0,0 +1,137 @@
+176, 109
+177, 110
+177, 111
+177, 112
+177, 114
+178, 118
+179, 122
+180, 125
+180, 126
+180, 127
+180, 128
+180, 129
+180, 130
+180, 131
+180, 133
+180, 134
+179, 136
+177, 138
+177, 139
+176, 140
+176, 141
+174, 143
+172, 145
+170, 147
+170, 148
+167, 150
+163, 154
+159, 158
+158, 158
+155, 160
+154, 161
+152, 163
+151, 164
+149, 165
+147, 166
+145, 167
+143, 169
+140, 171
+137, 172
+135, 174
+133, 175
+131, 176
+130, 176
+128, 177
+127, 177
+125, 178
+123, 179
+121, 179
+119, 179
+116, 179
+114, 180
+112, 180
+111, 180
+110, 180
+108, 180
+104, 181
+99, 181
+95, 181
+94, 181
+93, 179
+92, 179
+92, 176
+91, 173
+91, 171
+91, 170
+91, 168
+91, 165
+91, 164
+91, 163
+91, 162
+91, 161
+93, 159
+94, 159
+99, 156
+100, 156
+105, 153
+106, 152
+110, 149
+112, 148
+113, 148
+114, 147
+115, 146
+117, 145
+119, 144
+120, 144
+121, 143
+122, 142
+123, 142
+124, 142
+125, 141
+126, 141
+127, 140
+128, 140
+128, 139
+129, 138
+128, 138
+126, 137
+125, 136
+123, 136
+122, 136
+121, 135
+120, 135
+119, 135
+118, 135
+117, 135
+116, 135
+115, 135
+112, 134
+111, 134
+109, 134
+107, 133
+104, 133
+103, 133
+102, 133
+100, 133
+99, 133
+96, 133
+94, 133
+93, 133
+92, 133
+91, 133
+89, 133
+88, 133
+87, 133
+86, 133
+85, 133
+84, 133
+82, 133
+81, 133
+80, 133
+79, 133
+78, 133
+77, 133
+76, 133
+76, 133
+76, 133
+76, 133
diff --git a/examples/trajectories/horizon_2.txt b/examples/trajectories/horizon_2.txt
new file mode 100644
index 0000000000000000000000000000000000000000..6b2cc3c3783050131fbfe44450cf615fe6f8ab40
--- /dev/null
+++ b/examples/trajectories/horizon_2.txt
@@ -0,0 +1,48 @@
+121, 124
+123, 124
+124, 124
+125, 124
+127, 124
+130, 124
+131, 124
+135, 124
+140, 124
+143, 124
+144, 124
+145, 124
+149, 124
+152, 124
+154, 124
+155, 124
+156, 124
+159, 125
+160, 125
+163, 125
+166, 126
+168, 126
+169, 126
+170, 126
+173, 126
+176, 126
+177, 126
+178, 126
+179, 126
+180, 126
+181, 126
+183, 126
+184, 126
+185, 126
+186, 126
+187, 126
+188, 126
+189, 126
+190, 126
+191, 126
+192, 126
+193, 126
+194, 126
+195, 126
+196, 126
+196, 126
+196, 126
+196, 126
diff --git a/examples/trajectories/shake_1.txt b/examples/trajectories/shake_1.txt
new file mode 100644
index 0000000000000000000000000000000000000000..c52500d294a4b29e7e19853395aca59124282505
--- /dev/null
+++ b/examples/trajectories/shake_1.txt
@@ -0,0 +1,205 @@
+103, 89
+104, 89
+106, 89
+107, 89
+108, 89
+109, 89
+110, 89
+111, 89
+112, 89
+113, 89
+114, 89
+115, 89
+116, 89
+117, 89
+118, 89
+119, 89
+120, 89
+122, 89
+123, 89
+124, 89
+125, 89
+126, 89
+127, 88
+128, 88
+129, 88
+130, 88
+131, 88
+133, 87
+136, 86
+137, 86
+138, 86
+139, 86
+140, 86
+141, 86
+142, 86
+143, 86
+144, 86
+145, 86
+146, 87
+147, 87
+148, 87
+149, 87
+148, 87
+146, 87
+145, 88
+144, 88
+142, 89
+141, 89
+140, 90
+140, 91
+138, 91
+137, 92
+136, 92
+136, 93
+135, 93
+134, 93
+133, 93
+132, 93
+131, 93
+130, 93
+129, 93
+128, 93
+127, 92
+125, 92
+124, 92
+123, 92
+122, 92
+121, 92
+120, 92
+119, 92
+118, 92
+117, 92
+116, 92
+115, 92
+113, 92
+112, 92
+111, 92
+110, 92
+109, 92
+108, 92
+108, 91
+108, 90
+109, 90
+110, 90
+111, 89
+112, 89
+113, 89
+114, 89
+115, 89
+115, 88
+116, 88
+117, 88
+118, 88
+118, 87
+119, 87
+120, 87
+121, 87
+122, 86
+123, 86
+124, 86
+125, 86
+126, 85
+127, 85
+128, 85
+129, 85
+130, 85
+131, 85
+132, 85
+133, 85
+134, 85
+135, 85
+136, 85
+137, 85
+138, 85
+139, 85
+140, 85
+141, 85
+142, 85
+143, 85
+143, 84
+144, 84
+145, 84
+146, 84
+147, 84
+148, 84
+149, 84
+148, 84
+147, 84
+145, 84
+144, 84
+143, 84
+142, 84
+141, 84
+140, 85
+139, 85
+138, 85
+137, 86
+136, 86
+136, 87
+135, 87
+134, 87
+133, 87
+132, 88
+131, 88
+130, 88
+129, 88
+129, 89
+128, 89
+127, 89
+126, 89
+125, 89
+124, 90
+123, 90
+122, 90
+121, 90
+120, 91
+119, 91
+118, 91
+117, 91
+116, 91
+115, 91
+114, 91
+113, 91
+112, 91
+111, 91
+110, 91
+109, 91
+109, 90
+108, 90
+110, 90
+111, 90
+113, 90
+114, 90
+115, 90
+116, 90
+118, 90
+120, 90
+121, 90
+122, 90
+123, 90
+124, 90
+126, 90
+127, 90
+128, 90
+129, 90
+130, 90
+131, 90
+132, 90
+133, 90
+134, 90
+135, 90
+136, 90
+137, 90
+138, 90
+139, 90
+140, 90
+141, 89
+142, 89
+143, 89
+144, 89
+145, 89
+146, 89
+147, 89
+147, 89
+147, 89
diff --git a/examples/trajectories/shake_2.txt b/examples/trajectories/shake_2.txt
new file mode 100644
index 0000000000000000000000000000000000000000..d8a5bcc9980468d3ac5ae052761cb2dc3d2c7d9d
--- /dev/null
+++ b/examples/trajectories/shake_2.txt
@@ -0,0 +1,156 @@
+125, 86
+127, 86
+129, 86
+130, 86
+131, 86
+133, 86
+134, 86
+135, 86
+137, 86
+138, 86
+139, 86
+140, 86
+141, 86
+142, 86
+141, 86
+139, 86
+139, 87
+138, 87
+137, 87
+136, 87
+135, 87
+134, 87
+134, 88
+133, 88
+132, 88
+131, 88
+130, 88
+129, 88
+128, 88
+127, 88
+128, 88
+129, 88
+130, 88
+131, 88
+132, 88
+133, 88
+134, 88
+135, 88
+136, 88
+137, 88
+138, 88
+139, 88
+140, 88
+141, 88
+140, 88
+139, 88
+138, 88
+136, 88
+134, 88
+133, 88
+131, 88
+130, 88
+129, 88
+128, 88
+127, 88
+128, 88
+129, 88
+130, 88
+132, 87
+133, 87
+134, 86
+136, 86
+137, 86
+138, 85
+139, 85
+140, 85
+140, 84
+141, 84
+139, 85
+138, 85
+137, 86
+136, 86
+135, 86
+134, 86
+133, 86
+132, 86
+131, 86
+130, 86
+129, 86
+128, 86
+127, 86
+126, 86
+127, 86
+129, 86
+130, 86
+132, 86
+133, 86
+135, 86
+137, 86
+138, 86
+139, 86
+140, 86
+141, 87
+142, 87
+143, 87
+144, 88
+143, 88
+142, 88
+141, 88
+139, 88
+138, 88
+137, 88
+136, 88
+135, 88
+134, 88
+133, 88
+131, 88
+130, 88
+129, 88
+128, 88
+127, 88
+128, 88
+129, 88
+130, 88
+132, 88
+133, 88
+134, 88
+136, 88
+137, 88
+138, 88
+139, 88
+140, 88
+141, 88
+142, 88
+143, 88
+144, 88
+143, 88
+142, 88
+141, 88
+140, 88
+139, 88
+138, 88
+137, 88
+135, 89
+135, 90
+133, 90
+131, 91
+130, 91
+129, 91
+128, 91
+127, 91
+128, 91
+129, 91
+130, 91
+132, 91
+133, 90
+134, 89
+135, 89
+136, 89
+137, 89
+138, 89
+138, 88
+139, 88
+140, 88
+140, 88
+140, 88
diff --git a/examples/trajectories/shaking_10.txt b/examples/trajectories/shaking_10.txt
new file mode 100644
index 0000000000000000000000000000000000000000..939933d7a4d02594c502000c559b77526f961d0d
--- /dev/null
+++ b/examples/trajectories/shaking_10.txt
@@ -0,0 +1,373 @@
+117, 102
+114, 102
+109, 102
+106, 102
+105, 102
+102, 102
+99, 102
+97, 102
+96, 102
+95, 102
+93, 102
+89, 102
+85, 103
+82, 103
+81, 103
+80, 103
+79, 103
+78, 103
+76, 103
+74, 104
+73, 104
+72, 104
+71, 104
+70, 105
+69, 105
+68, 105
+67, 105
+66, 106
+64, 107
+63, 108
+62, 108
+61, 108
+61, 109
+60, 109
+59, 109
+58, 109
+57, 110
+56, 110
+55, 111
+54, 111
+53, 111
+52, 111
+52, 112
+51, 112
+50, 112
+50, 113
+49, 113
+48, 113
+46, 114
+46, 115
+45, 115
+45, 116
+44, 116
+43, 117
+42, 117
+41, 117
+41, 118
+40, 118
+41, 118
+41, 119
+42, 119
+43, 119
+44, 119
+46, 119
+47, 119
+48, 119
+49, 119
+50, 119
+51, 119
+52, 119
+53, 119
+54, 119
+55, 119
+56, 118
+58, 118
+59, 118
+61, 118
+63, 118
+64, 117
+67, 117
+70, 117
+71, 117
+73, 117
+75, 116
+76, 116
+77, 116
+80, 116
+82, 116
+83, 116
+84, 116
+85, 116
+88, 116
+91, 116
+94, 116
+97, 116
+98, 116
+100, 116
+101, 117
+102, 117
+104, 117
+105, 117
+106, 117
+107, 117
+108, 117
+109, 117
+110, 117
+111, 117
+115, 117
+119, 117
+123, 117
+124, 117
+128, 117
+129, 117
+132, 117
+134, 117
+135, 117
+136, 117
+138, 117
+139, 117
+140, 117
+141, 117
+142, 116
+145, 116
+146, 116
+148, 116
+149, 116
+151, 115
+152, 115
+153, 115
+154, 115
+155, 114
+156, 114
+157, 114
+158, 114
+159, 114
+162, 114
+163, 113
+164, 113
+165, 113
+166, 113
+167, 113
+168, 113
+169, 113
+170, 113
+171, 113
+172, 113
+173, 113
+174, 113
+175, 113
+178, 113
+181, 113
+182, 113
+183, 113
+184, 113
+185, 113
+187, 113
+188, 113
+189, 113
+191, 113
+192, 113
+193, 113
+194, 113
+195, 113
+196, 113
+197, 113
+198, 113
+199, 113
+200, 113
+201, 113
+202, 113
+203, 113
+202, 113
+201, 113
+200, 113
+198, 113
+197, 113
+196, 113
+195, 112
+194, 112
+193, 112
+192, 112
+191, 111
+190, 111
+189, 111
+188, 110
+187, 110
+186, 110
+185, 110
+184, 110
+183, 110
+182, 110
+181, 110
+180, 110
+179, 110
+178, 110
+177, 110
+175, 110
+173, 110
+172, 110
+171, 110
+170, 110
+168, 110
+167, 110
+165, 110
+164, 110
+163, 110
+161, 111
+159, 111
+155, 111
+153, 111
+151, 111
+151, 112
+150, 112
+149, 112
+148, 112
+147, 112
+145, 112
+143, 113
+142, 113
+140, 113
+139, 113
+138, 113
+136, 113
+135, 113
+134, 113
+133, 114
+131, 114
+130, 114
+128, 115
+127, 115
+126, 115
+125, 115
+124, 115
+122, 115
+121, 115
+120, 115
+118, 116
+115, 116
+113, 116
+111, 116
+109, 117
+106, 117
+103, 117
+102, 117
+100, 117
+98, 117
+97, 117
+95, 117
+94, 117
+93, 117
+92, 117
+91, 117
+90, 117
+89, 117
+88, 117
+87, 117
+86, 117
+85, 117
+84, 117
+83, 117
+84, 117
+85, 117
+87, 117
+88, 117
+89, 117
+90, 117
+92, 117
+93, 117
+95, 117
+97, 117
+99, 117
+101, 117
+103, 117
+104, 117
+105, 117
+106, 117
+107, 117
+108, 117
+109, 117
+110, 117
+112, 117
+113, 117
+114, 117
+116, 117
+117, 117
+118, 117
+119, 117
+120, 117
+121, 117
+123, 117
+124, 117
+125, 117
+126, 117
+127, 117
+129, 117
+130, 117
+131, 117
+133, 117
+134, 117
+135, 117
+136, 117
+137, 117
+138, 117
+139, 117
+140, 117
+141, 117
+142, 117
+143, 117
+145, 117
+146, 117
+147, 117
+148, 117
+149, 117
+150, 117
+149, 117
+148, 117
+147, 117
+146, 117
+144, 117
+143, 118
+142, 118
+141, 118
+140, 118
+139, 118
+138, 118
+136, 118
+135, 118
+132, 119
+131, 119
+130, 119
+129, 119
+127, 119
+126, 119
+124, 119
+123, 119
+122, 119
+121, 119
+119, 119
+118, 119
+117, 119
+115, 119
+114, 119
+113, 119
+112, 119
+111, 119
+110, 119
+109, 119
+108, 119
+107, 119
+106, 119
+107, 119
+108, 119
+109, 119
+110, 119
+112, 119
+113, 119
+114, 119
+115, 119
+116, 119
+117, 119
+118, 119
+119, 119
+120, 119
+121, 119
+122, 119
+123, 119
+124, 119
+125, 119
+126, 119
+127, 119
+127, 119
+127, 119
+127, 119
diff --git a/gradio_utils/camera_utils.py b/gradio_utils/camera_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..2162e43b46458a62766335927e8c66b8451fb5de
--- /dev/null
+++ b/gradio_utils/camera_utils.py
@@ -0,0 +1,146 @@
+import copy
+# import plotly.express as px
+# import plotly.graph_objects as go
+import json
+
+import numpy as np
+
+CAMERA_MOTION_MODE = ["Basic Camera Poses", "Provided Complex Camera Poses", "Customize Camera Poses"]
+
+CAMERA = {
+ # T
+ "base_T_norm": 1.5,
+ "base_angle": np.pi/3,
+
+ "Pan Up": { "angle":[0., 0., 0.], "T":[0., 1., 0.]},
+ "Pan Down": { "angle":[0., 0., 0.], "T":[0.,-1.,0.]},
+ "Pan Left": { "angle":[0., 0., 0.], "T":[1.,0.,0.]},
+ "Pan Right": { "angle":[0., 0., 0.], "T": [-1.,0.,0.]},
+ "Zoom In": { "angle":[0., 0., 0.], "T": [0.,0.,-2.]},
+ "Zoom Out": { "angle":[0., 0., 0.], "T": [0.,0.,2.]},
+ "ACW": { "angle": [0., 0., 1.], "T":[0., 0., 0.]},
+ "CW": { "angle": [0., 0., -1.], "T":[0., 0., 0.]},
+}
+
+COMPLEX_CAMERA = {
+ "Pose_1": "examples/camera_poses/test_camera_1424acd0007d40b5.json",
+ "Pose_2": "examples/camera_poses/test_camera_d971457c81bca597.json",
+ "Pose_3": "examples/camera_poses/test_camera_Round-ZoomIn.json",
+ "Pose_4": "examples/camera_poses/test_camera_Round-RI_90.json",
+ "Pose_5": "examples/camera_poses/test_camera_Round-RI_120.json",
+ "Pose_6": "examples/camera_poses/test_camera_018f7907401f2fef.json",
+ "Pose_7": "examples/camera_poses/test_camera_088b93f15ca8745d.json",
+ "Pose_8": "examples/camera_poses/test_camera_b133a504fc90a2d1.json",
+}
+
+
+
+def compute_R_form_rad_angle(angles):
+ theta_x, theta_y, theta_z = angles
+ Rx = np.array([[1, 0, 0],
+ [0, np.cos(theta_x), -np.sin(theta_x)],
+ [0, np.sin(theta_x), np.cos(theta_x)]])
+
+ Ry = np.array([[np.cos(theta_y), 0, np.sin(theta_y)],
+ [0, 1, 0],
+ [-np.sin(theta_y), 0, np.cos(theta_y)]])
+
+ Rz = np.array([[np.cos(theta_z), -np.sin(theta_z), 0],
+ [np.sin(theta_z), np.cos(theta_z), 0],
+ [0, 0, 1]])
+
+ # 计算相机外参的旋转矩阵
+ R = np.dot(Rz, np.dot(Ry, Rx))
+ return R
+
+def get_camera_motion(angle, T, speed, n=16):
+ RT = []
+ for i in range(n):
+ _angle = (i/n)*speed*(CAMERA["base_angle"])*angle
+ R = compute_R_form_rad_angle(_angle)
+ # _T = (i/n)*speed*(T.reshape(3,1))
+ _T=(i/n)*speed*(CAMERA["base_T_norm"])*(T.reshape(3,1))
+ _RT = np.concatenate([R,_T], axis=1)
+ RT.append(_RT)
+ RT = np.stack(RT)
+ return RT
+
+def create_relative(RT_list, K_1=4.7, dataset="syn"):
+ RT = copy.deepcopy(RT_list[0])
+ R_inv = RT[:,:3].T
+ T = RT[:,-1]
+
+ temp = []
+ for _RT in RT_list:
+ _RT[:,:3] = np.dot(_RT[:,:3], R_inv)
+ _RT[:,-1] = _RT[:,-1] - np.dot(_RT[:,:3], T)
+ temp.append(_RT)
+ RT_list = temp
+
+ return RT_list
+
+def combine_camera_motion(RT_0, RT_1):
+ RT = copy.deepcopy(RT_0[-1])
+ R = RT[:,:3]
+ R_inv = RT[:,:3].T
+ T = RT[:,-1]
+
+ temp = []
+ for _RT in RT_1:
+ _RT[:,:3] = np.dot(_RT[:,:3], R)
+ _RT[:,-1] = _RT[:,-1] + np.dot(np.dot(_RT[:,:3], R_inv), T)
+ temp.append(_RT)
+
+ RT_1 = np.stack(temp)
+
+ return np.concatenate([RT_0, RT_1], axis=0)
+
+def process_camera(camera_dict):
+ # "First A then B", "Both A and B", "Custom"
+ if camera_dict['complex'] is not None:
+ with open(COMPLEX_CAMERA[camera_dict['complex']]) as f:
+ RT = json.load(f) # [16, 12]
+ RT = np.array(RT).reshape(-1, 3, 4)
+ print(RT.shape)
+ return RT
+
+
+ motion_list = camera_dict['motion']
+ mode = camera_dict['mode']
+ speed = camera_dict['speed']
+ print(len(motion_list))
+ if len(motion_list) == 0:
+ angle = np.array([0,0,0])
+ T = np.array([0,0,0])
+ RT = get_camera_motion(angle, T, speed, 16)
+
+
+ elif len(motion_list) == 1:
+ angle = np.array(CAMERA[motion_list[0]]["angle"])
+ T = np.array(CAMERA[motion_list[0]]["T"])
+ print(angle, T)
+ RT = get_camera_motion(angle, T, speed, 16)
+
+
+
+ elif len(motion_list) == 2:
+ if mode == "Customized Mode 1: First A then B":
+ angle = np.array(CAMERA[motion_list[0]]["angle"])
+ T = np.array(CAMERA[motion_list[0]]["T"])
+ RT_0 = get_camera_motion(angle, T, speed, 8)
+
+ angle = np.array(CAMERA[motion_list[1]]["angle"])
+ T = np.array(CAMERA[motion_list[1]]["T"])
+ RT_1 = get_camera_motion(angle, T, speed, 8)
+
+ RT = combine_camera_motion(RT_0, RT_1)
+
+ elif mode == "Customized Mode 2: Both A and B":
+ angle = np.array(CAMERA[motion_list[0]]["angle"]) + np.array(CAMERA[motion_list[1]]["angle"])
+ T = np.array(CAMERA[motion_list[0]]["T"]) + np.array(CAMERA[motion_list[1]]["T"])
+ RT = get_camera_motion(angle, T, speed, 16)
+
+
+ # return RT.reshape(-1, 12)
+ return RT
+
diff --git a/gradio_utils/flow_utils.py b/gradio_utils/flow_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..3a86b38a3f555650fe6dd0f6d504bd6d5bbbf933
--- /dev/null
+++ b/gradio_utils/flow_utils.py
@@ -0,0 +1,69 @@
+import numpy as np
+
+
+def sigma_matrix2(sig_x, sig_y, theta):
+ """Calculate the rotated sigma matrix (two dimensional matrix).
+ Args:
+ sig_x (float):
+ sig_y (float):
+ theta (float): Radian measurement.
+ Returns:
+ ndarray: Rotated sigma matrix.
+ """
+ d_matrix = np.array([[sig_x**2, 0], [0, sig_y**2]])
+ u_matrix = np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]])
+ return np.dot(u_matrix, np.dot(d_matrix, u_matrix.T))
+
+
+def mesh_grid(kernel_size):
+ """Generate the mesh grid, centering at zero.
+ Args:
+ kernel_size (int):
+ Returns:
+ xy (ndarray): with the shape (kernel_size, kernel_size, 2)
+ xx (ndarray): with the shape (kernel_size, kernel_size)
+ yy (ndarray): with the shape (kernel_size, kernel_size)
+ """
+ ax = np.arange(-kernel_size // 2 + 1., kernel_size // 2 + 1.)
+ xx, yy = np.meshgrid(ax, ax)
+ xy = np.hstack((xx.reshape((kernel_size * kernel_size, 1)), yy.reshape(kernel_size * kernel_size,
+ 1))).reshape(kernel_size, kernel_size, 2)
+ return xy, xx, yy
+
+
+def pdf2(sigma_matrix, grid):
+ """Calculate PDF of the bivariate Gaussian distribution.
+ Args:
+ sigma_matrix (ndarray): with the shape (2, 2)
+ grid (ndarray): generated by :func:`mesh_grid`,
+ with the shape (K, K, 2), K is the kernel size.
+ Returns:
+ kernel (ndarrray): un-normalized kernel.
+ """
+ inverse_sigma = np.linalg.inv(sigma_matrix)
+ kernel = np.exp(-0.5 * np.sum(np.dot(grid, inverse_sigma) * grid, 2))
+ return kernel
+
+def bivariate_Gaussian(kernel_size, sig_x, sig_y, theta, grid=None, isotropic=True):
+ """Generate a bivariate isotropic or anisotropic Gaussian kernel.
+ In the isotropic mode, only `sig_x` is used. `sig_y` and `theta` is ignored.
+ Args:
+ kernel_size (int):
+ sig_x (float):
+ sig_y (float):
+ theta (float): Radian measurement.
+ grid (ndarray, optional): generated by :func:`mesh_grid`,
+ with the shape (K, K, 2), K is the kernel size. Default: None
+ isotropic (bool):
+ Returns:
+ kernel (ndarray): normalized kernel.
+ """
+ if grid is None:
+ grid, _, _ = mesh_grid(kernel_size)
+ if isotropic:
+ sigma_matrix = np.array([[sig_x**2, 0], [0, sig_x**2]])
+ else:
+ sigma_matrix = sigma_matrix2(sig_x, sig_y, theta)
+ kernel = pdf2(sigma_matrix, grid)
+ kernel = kernel / np.sum(kernel)
+ return kernel
diff --git a/gradio_utils/traj_utils.py b/gradio_utils/traj_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..bb0513c915a675c89347c1e461b5b8c461003155
--- /dev/null
+++ b/gradio_utils/traj_utils.py
@@ -0,0 +1,104 @@
+import cv2
+import numpy as np
+
+from gradio_utils.flow_utils import bivariate_Gaussian
+
+OBJECT_MOTION_MODE = ["Provided Trajectory", "Custom Trajectory"]
+
+PROVIDED_TRAJS = {
+ "horizon_1": "examples/trajectories/horizon_2.txt",
+ "swaying_1": "examples/trajectories/shake_1.txt",
+ "swaying_2": "examples/trajectories/shake_2.txt",
+ "swaying_3": "examples/trajectories/shaking_10.txt",
+ "curve_1": "examples/trajectories/curve_1.txt",
+ "curve_2": "examples/trajectories/curve_2.txt",
+ "curve_3": "examples/trajectories/curve_3.txt",
+ "curve_4": "examples/trajectories/curve_4.txt",
+}
+
+
+def read_points(file, video_len=16, reverse=False):
+ with open(file, 'r') as f:
+ lines = f.readlines()
+ points = []
+ for line in lines:
+ x, y = line.strip().split(',')
+ points.append((int(x), int(y)))
+ if reverse:
+ points = points[::-1]
+
+ if len(points) > video_len:
+ skip = len(points) // video_len
+ points = points[::skip]
+ points = points[:video_len]
+
+ return points
+
+def get_provided_traj(traj_name):
+ traj = read_points(PROVIDED_TRAJS[traj_name])
+ # xrange from 256 to 1024
+ traj = [[int(1024*x/256), int(1024*y/256)] for x,y in traj]
+ return traj
+
+blur_kernel = bivariate_Gaussian(99, 10, 10, 0, grid=None, isotropic=True)
+
+def process_points(points):
+ frames = 16
+ defualt_points = [[512,512]]*16
+
+ if len(points) < 2:
+ return defualt_points
+ elif len(points) >= frames:
+ skip = len(points)//frames
+ return points[::skip][:15] + points[-1:]
+ else:
+ insert_num = frames - len(points)
+ insert_num_dict = {}
+ interval = len(points) - 1
+ n = insert_num // interval
+ m = insert_num % interval
+ for i in range(interval):
+ insert_num_dict[i] = n
+ for i in range(m):
+ insert_num_dict[i] += 1
+
+ res = []
+ for i in range(interval):
+ insert_points = []
+ x0,y0 = points[i]
+ x1,y1 = points[i+1]
+
+ delta_x = x1 - x0
+ delta_y = y1 - y0
+ for j in range(insert_num_dict[i]):
+ x = x0 + (j+1)/(insert_num_dict[i]+1)*delta_x
+ y = y0 + (j+1)/(insert_num_dict[i]+1)*delta_y
+ insert_points.append([int(x), int(y)])
+
+ res += points[i:i+1] + insert_points
+ res += points[-1:]
+ return res
+
+def get_flow(points, video_len=16):
+ optical_flow = np.zeros((video_len, 256, 256, 2), dtype=np.float32)
+ for i in range(video_len-1):
+ p = points[i]
+ p1 = points[i+1]
+ optical_flow[i+1, p[1], p[0], 0] = p1[0] - p[0]
+ optical_flow[i+1, p[1], p[0], 1] = p1[1] - p[1]
+ for i in range(1, video_len):
+ optical_flow[i] = cv2.filter2D(optical_flow[i], -1, blur_kernel)
+
+
+ return optical_flow
+
+
+def process_traj(points, device='cpu'):
+ xy_range = 1024
+ points = process_points(points)
+ points = [[int(256*x/xy_range), int(256*y/xy_range)] for x,y in points]
+
+ optical_flow = get_flow(points)
+ # optical_flow = torch.tensor(optical_flow).to(device)
+
+ return optical_flow
\ No newline at end of file
diff --git a/gradio_utils/utils.py b/gradio_utils/utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..9d783d0a7ed9791e7ff2c4f002282f8061e00348
--- /dev/null
+++ b/gradio_utils/utils.py
@@ -0,0 +1,175 @@
+import numpy as np
+import plotly.express as px
+import plotly.graph_objects as go
+
+def vis_camera(RT_list, rescale_T=1):
+ fig = go.Figure()
+ showticklabels = True
+ visible = True
+ scene_bounds = 2
+ base_radius = 2.5
+ zoom_scale = 1.5
+ fov_deg = 50.0
+
+ edges = [(0, 1), (0, 2), (0, 3), (1, 2), (2, 3), (3, 1), (3, 4)]
+
+ colors = px.colors.qualitative.Plotly
+
+ cone_list = []
+ n = len(RT_list)
+ for i, RT in enumerate(RT_list):
+ R = RT[:,:3]
+ T = RT[:,-1]/rescale_T
+ cone = calc_cam_cone_pts_3d(R, T, fov_deg)
+ cone_list.append((cone, (i*1/n, "green"), f"view_{i}"))
+
+
+ for (cone, clr, legend) in cone_list:
+ for (i, edge) in enumerate(edges):
+ (x1, x2) = (cone[edge[0], 0], cone[edge[1], 0])
+ (y1, y2) = (cone[edge[0], 1], cone[edge[1], 1])
+ (z1, z2) = (cone[edge[0], 2], cone[edge[1], 2])
+ fig.add_trace(go.Scatter3d(
+ x=[x1, x2], y=[y1, y2], z=[z1, z2], mode='lines',
+ line=dict(color=clr, width=3),
+ name=legend, showlegend=(i == 0)))
+ fig.update_layout(
+ height=500,
+ autosize=True,
+ # hovermode=False,
+ margin=go.layout.Margin(l=0, r=0, b=0, t=0),
+
+ showlegend=True,
+ legend=dict(
+ yanchor='bottom',
+ y=0.01,
+ xanchor='right',
+ x=0.99,
+ ),
+ scene=dict(
+ aspectmode='manual',
+ aspectratio=dict(x=1, y=1, z=1.0),
+ camera=dict(
+ center=dict(x=0.0, y=0.0, z=0.0),
+ up=dict(x=0.0, y=-1.0, z=0.0),
+ eye=dict(x=scene_bounds/2, y=-scene_bounds/2, z=-scene_bounds/2),
+ ),
+
+ xaxis=dict(
+ range=[-scene_bounds, scene_bounds],
+ showticklabels=showticklabels,
+ visible=visible,
+ ),
+
+
+ yaxis=dict(
+ range=[-scene_bounds, scene_bounds],
+ showticklabels=showticklabels,
+ visible=visible,
+ ),
+
+
+ zaxis=dict(
+ range=[-scene_bounds, scene_bounds],
+ showticklabels=showticklabels,
+ visible=visible,
+ )
+ ))
+ return fig
+
+
+def calc_cam_cone_pts_3d(R_W2C, T_W2C, fov_deg, scale=0.1, set_canonical=False, first_frame_RT=None):
+ fov_rad = np.deg2rad(fov_deg)
+ R_W2C_inv = np.linalg.inv(R_W2C)
+
+ # Camera pose center:
+ T = np.zeros_like(T_W2C) - T_W2C
+ T = np.dot(R_W2C_inv, T)
+ cam_x = T[0]
+ cam_y = T[1]
+ cam_z = T[2]
+ if set_canonical:
+ T = np.zeros_like(T_W2C)
+ T = np.dot(first_frame_RT[:,:3], T) + first_frame_RT[:,-1]
+ T = T - T_W2C
+ T = np.dot(R_W2C_inv, T)
+ cam_x = T[0]
+ cam_y = T[1]
+ cam_z = T[2]
+
+ # vertex
+ corn1 = np.array([np.tan(fov_rad / 2.0), 0.5*np.tan(fov_rad / 2.0), 1.0]) *scale
+ corn2 = np.array([-np.tan(fov_rad / 2.0), 0.5*np.tan(fov_rad / 2.0), 1.0]) *scale
+ corn3 = np.array([0, -0.25*np.tan(fov_rad / 2.0), 1.0]) *scale
+ corn4 = np.array([0, -0.5*np.tan(fov_rad / 2.0), 1.0]) *scale
+
+ corn1 = corn1 - T_W2C
+ corn2 = corn2 - T_W2C
+ corn3 = corn3 - T_W2C
+ corn4 = corn4 - T_W2C
+
+ corn1 = np.dot(R_W2C_inv, corn1)
+ corn2 = np.dot(R_W2C_inv, corn2)
+ corn3 = np.dot(R_W2C_inv, corn3)
+ corn4 = np.dot(R_W2C_inv, corn4)
+
+ # Now attach as offset to actual 3D camera position:
+ corn_x1 = corn1[0]
+ corn_y1 = corn1[1]
+ corn_z1 = corn1[2]
+
+ corn_x2 = corn2[0]
+ corn_y2 = corn2[1]
+ corn_z2 = corn2[2]
+
+ corn_x3 = corn3[0]
+ corn_y3 = corn3[1]
+ corn_z3 = corn3[2]
+
+ corn_x4 = corn4[0]
+ corn_y4 = corn4[1]
+ corn_z4 = corn4[2]
+
+
+ xs = [cam_x, corn_x1, corn_x2, corn_x3, corn_x4, ]
+ ys = [cam_y, corn_y1, corn_y2, corn_y3, corn_y4, ]
+ zs = [cam_z, corn_z1, corn_z2, corn_z3, corn_z4, ]
+
+ return np.array([xs, ys, zs]).T
+
+
+
+ # T_base = [
+ # [1.,0.,0.], ## W2C x 的正方向: 相机朝左 left
+ # [-1.,0.,0.], ## W2C x 的负方向: 相机朝右 right
+ # [0., 1., 0.], ## W2C y 的正方向: 相机朝上 up
+ # [0.,-1.,0.], ## W2C y 的负方向: 相机朝下 down
+ # [0.,0.,1.], ## W2C z 的正方向: 相机往前 zoom out
+ # [0.,0.,-1.], ## W2C z 的负方向: 相机往前 zoom in
+ # ]
+ # radius = 1
+ # n = 16
+ # # step =
+ # look_at = np.array([0, 0, 0.8]).reshape(3,1)
+ # # look_at = np.array([0, 0, 0.2]).reshape(3,1)
+
+ # T_list = []
+ # base_R = np.array([[1., 0., 0.],
+ # [0., 1., 0.],
+ # [0., 0., 1.]])
+ # res = []
+ # res_forsave = []
+ # T_range = 1.8
+
+
+
+ # for i in range(0, 16):
+ # # theta = (1)*np.pi*i/n
+
+ # R = base_R[:,:3]
+ # T = np.array([0.,0.,1.]).reshape(3,1) * (i/n)*2
+ # RT = np.concatenate([R,T], axis=1)
+ # res.append(RT)
+
+ # fig = vis_camera(res)
+
\ No newline at end of file
diff --git a/lvdm/basics.py b/lvdm/basics.py
new file mode 100644
index 0000000000000000000000000000000000000000..b310f8e2ecd0401bc2446cd6fa49e78e65d96dcf
--- /dev/null
+++ b/lvdm/basics.py
@@ -0,0 +1,106 @@
+# adopted from
+# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
+# and
+# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
+# and
+# https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
+#
+# thanks!
+
+import numpy as np
+from einops import repeat
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+from utils.utils import instantiate_from_config
+
+
+def disabled_train(self, mode=True):
+ """Overwrite model.train with this function to make sure train/eval mode
+ does not change anymore."""
+ return self
+
+def zero_module(module):
+ """
+ Zero out the parameters of a module and return it.
+ """
+ for p in module.parameters():
+ p.detach().zero_()
+ return module
+
+def scale_module(module, scale):
+ """
+ Scale the parameters of a module and return it.
+ """
+ for p in module.parameters():
+ p.detach().mul_(scale)
+ return module
+
+
+def conv_nd(dims, *args, **kwargs):
+ """
+ Create a 1D, 2D, or 3D convolution module.
+ """
+ if dims == 1:
+ return nn.Conv1d(*args, **kwargs)
+ elif dims == 2:
+ return nn.Conv2d(*args, **kwargs)
+ elif dims == 3:
+ return nn.Conv3d(*args, **kwargs)
+ raise ValueError(f"unsupported dimensions: {dims}")
+
+
+def linear(*args, **kwargs):
+ """
+ Create a linear module.
+ """
+ return nn.Linear(*args, **kwargs)
+
+
+def avg_pool_nd(dims, *args, **kwargs):
+ """
+ Create a 1D, 2D, or 3D average pooling module.
+ """
+ if dims == 1:
+ return nn.AvgPool1d(*args, **kwargs)
+ elif dims == 2:
+ return nn.AvgPool2d(*args, **kwargs)
+ elif dims == 3:
+ return nn.AvgPool3d(*args, **kwargs)
+ raise ValueError(f"unsupported dimensions: {dims}")
+
+
+def nonlinearity(type='silu'):
+ if type == 'silu':
+ return nn.SiLU()
+ elif type == 'leaky_relu':
+ return nn.LeakyReLU()
+
+
+class GroupNormSpecific(nn.GroupNorm):
+ def forward(self, x):
+ return super().forward(x.float()).type(x.dtype)
+
+
+def normalization(channels, num_groups=32):
+ """
+ Make a standard normalization layer.
+ :param channels: number of input channels.
+ :return: an nn.Module for normalization.
+ """
+ return GroupNormSpecific(num_groups, channels)
+
+
+class HybridConditioner(nn.Module):
+
+ def __init__(self, c_concat_config, c_crossattn_config):
+ super().__init__()
+ self.concat_conditioner = instantiate_from_config(c_concat_config)
+ self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
+
+ def forward(self, c_concat, c_crossattn):
+ c_concat = self.concat_conditioner(c_concat)
+ c_crossattn = self.crossattn_conditioner(c_crossattn)
+ return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]}
\ No newline at end of file
diff --git a/lvdm/common.py b/lvdm/common.py
new file mode 100644
index 0000000000000000000000000000000000000000..d2cdee9dfe041780e22cdf6f2fcaf1aad6f4084e
--- /dev/null
+++ b/lvdm/common.py
@@ -0,0 +1,142 @@
+import os, math
+import numpy as np
+from inspect import isfunction
+
+import torch
+from torch import nn
+import torch.nn.functional as F
+import torch.distributed as dist
+
+
+def gather_data(data, return_np=True):
+ ''' gather data from multiple processes to one list '''
+ data_list = [torch.zeros_like(data) for _ in range(dist.get_world_size())]
+ dist.all_gather(data_list, data) # gather not supported with NCCL
+ if return_np:
+ data_list = [data.cpu().numpy() for data in data_list]
+ return data_list
+
+def autocast(f):
+ def do_autocast(*args, **kwargs):
+ with torch.cuda.amp.autocast(enabled=True,
+ dtype=torch.get_autocast_gpu_dtype(),
+ cache_enabled=torch.is_autocast_cache_enabled()):
+ return f(*args, **kwargs)
+ return do_autocast
+
+
+def extract_into_tensor(a, t, x_shape):
+ b, *_ = t.shape
+ out = a.gather(-1, t)
+ return out.reshape(b, *((1,) * (len(x_shape) - 1)))
+
+
+def noise_like(shape, device, repeat=False):
+ repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
+ noise = lambda: torch.randn(shape, device=device)
+ return repeat_noise() if repeat else noise()
+
+
+def default(val, d):
+ if exists(val):
+ return val
+ return d() if isfunction(d) else d
+
+def exists(val):
+ return val is not None
+
+def identity(*args, **kwargs):
+ return nn.Identity()
+
+def uniq(arr):
+ return{el: True for el in arr}.keys()
+
+def mean_flat(tensor):
+ """
+ Take the mean over all non-batch dimensions.
+ """
+ return tensor.mean(dim=list(range(1, len(tensor.shape))))
+
+def ismap(x):
+ if not isinstance(x, torch.Tensor):
+ return False
+ return (len(x.shape) == 4) and (x.shape[1] > 3)
+
+def isimage(x):
+ if not isinstance(x,torch.Tensor):
+ return False
+ return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1)
+
+def max_neg_value(t):
+ return -torch.finfo(t.dtype).max
+
+def shape_to_str(x):
+ shape_str = "x".join([str(x) for x in x.shape])
+ return shape_str
+
+def init_(tensor):
+ dim = tensor.shape[-1]
+ std = 1 / math.sqrt(dim)
+ tensor.uniform_(-std, std)
+ return tensor
+
+#import deepspeed
+#ckpt = deepspeed.checkpointing.checkpoint
+ckpt = torch.utils.checkpoint.checkpoint
+def checkpoint(func, inputs, params, flag):
+ """
+ Evaluate a function without caching intermediate activations, allowing for
+ reduced memory at the expense of extra compute in the backward pass.
+ :param func: the function to evaluate.
+ :param inputs: the argument sequence to pass to `func`.
+ :param params: a sequence of parameters `func` depends on but does not
+ explicitly take as arguments.
+ :param flag: if False, disable gradient checkpointing.
+ """
+ if flag:
+ try:
+ return ckpt(func, *inputs)
+ except:
+ args = tuple(inputs) + tuple(params)
+ return CheckpointFunction.apply(func, len(inputs), *args)
+ else:
+ return func(*inputs)
+
+
+class CheckpointFunction(torch.autograd.Function):
+ @staticmethod
+ @torch.cuda.amp.custom_fwd
+ def forward(ctx, run_function, length, *args):
+ ctx.run_function = run_function
+ ctx.input_tensors = list(args[:length])
+ ctx.input_params = list(args[length:])
+
+ with torch.no_grad():
+ output_tensors = ctx.run_function(*ctx.input_tensors)
+ return output_tensors
+
+ @staticmethod
+ @torch.cuda.amp.custom_bwd # add this
+ def backward(ctx, *output_grads):
+ '''
+ for x in ctx.input_tensors:
+ if isinstance(x, int):
+ print('-----------------', ctx.run_function)
+ '''
+ ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
+ with torch.enable_grad():
+ # Fixes a bug where the first op in run_function modifies the
+ # Tensor storage in place, which is not allowed for detach()'d
+ # Tensors.
+ shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
+ output_tensors = ctx.run_function(*shallow_copies)
+ input_grads = torch.autograd.grad(
+ output_tensors,
+ ctx.input_tensors + ctx.input_params,
+ output_grads,
+ allow_unused=True,
+ )
+ del ctx.input_tensors
+ del ctx.input_params
+ del output_tensors
+ return (None, None) + input_grads
diff --git a/lvdm/distributions.py b/lvdm/distributions.py
new file mode 100644
index 0000000000000000000000000000000000000000..0b69b6984880ec24279b658384ed8031335e3474
--- /dev/null
+++ b/lvdm/distributions.py
@@ -0,0 +1,95 @@
+import torch
+import numpy as np
+
+
+class AbstractDistribution:
+ def sample(self):
+ raise NotImplementedError()
+
+ def mode(self):
+ raise NotImplementedError()
+
+
+class DiracDistribution(AbstractDistribution):
+ def __init__(self, value):
+ self.value = value
+
+ def sample(self):
+ return self.value
+
+ def mode(self):
+ return self.value
+
+
+class DiagonalGaussianDistribution(object):
+ def __init__(self, parameters, deterministic=False):
+ self.parameters = parameters
+ self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
+ self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
+ self.deterministic = deterministic
+ self.std = torch.exp(0.5 * self.logvar)
+ self.var = torch.exp(self.logvar)
+ if self.deterministic:
+ self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device)
+
+ def sample(self, noise=None):
+ if noise is None:
+ noise = torch.randn(self.mean.shape)
+
+ x = self.mean + self.std * noise.to(device=self.parameters.device)
+ return x
+
+ def kl(self, other=None):
+ if self.deterministic:
+ return torch.Tensor([0.])
+ else:
+ if other is None:
+ return 0.5 * torch.sum(torch.pow(self.mean, 2)
+ + self.var - 1.0 - self.logvar,
+ dim=[1, 2, 3])
+ else:
+ return 0.5 * torch.sum(
+ torch.pow(self.mean - other.mean, 2) / other.var
+ + self.var / other.var - 1.0 - self.logvar + other.logvar,
+ dim=[1, 2, 3])
+
+ def nll(self, sample, dims=[1,2,3]):
+ if self.deterministic:
+ return torch.Tensor([0.])
+ logtwopi = np.log(2.0 * np.pi)
+ return 0.5 * torch.sum(
+ logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
+ dim=dims)
+
+ def mode(self):
+ return self.mean
+
+
+def normal_kl(mean1, logvar1, mean2, logvar2):
+ """
+ source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12
+ Compute the KL divergence between two gaussians.
+ Shapes are automatically broadcasted, so batches can be compared to
+ scalars, among other use cases.
+ """
+ tensor = None
+ for obj in (mean1, logvar1, mean2, logvar2):
+ if isinstance(obj, torch.Tensor):
+ tensor = obj
+ break
+ assert tensor is not None, "at least one argument must be a Tensor"
+
+ # Force variances to be Tensors. Broadcasting helps convert scalars to
+ # Tensors, but it does not work for torch.exp().
+ logvar1, logvar2 = [
+ x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor)
+ for x in (logvar1, logvar2)
+ ]
+
+ return 0.5 * (
+ -1.0
+ + logvar2
+ - logvar1
+ + torch.exp(logvar1 - logvar2)
+ + ((mean1 - mean2) ** 2) * torch.exp(-logvar2)
+ )
diff --git a/lvdm/ema.py b/lvdm/ema.py
new file mode 100644
index 0000000000000000000000000000000000000000..c8c75af43565f6e140287644aaaefa97dd6e67c5
--- /dev/null
+++ b/lvdm/ema.py
@@ -0,0 +1,76 @@
+import torch
+from torch import nn
+
+
+class LitEma(nn.Module):
+ def __init__(self, model, decay=0.9999, use_num_upates=True):
+ super().__init__()
+ if decay < 0.0 or decay > 1.0:
+ raise ValueError('Decay must be between 0 and 1')
+
+ self.m_name2s_name = {}
+ self.register_buffer('decay', torch.tensor(decay, dtype=torch.float32))
+ self.register_buffer('num_updates', torch.tensor(0,dtype=torch.int) if use_num_upates
+ else torch.tensor(-1,dtype=torch.int))
+
+ for name, p in model.named_parameters():
+ if p.requires_grad:
+ #remove as '.'-character is not allowed in buffers
+ s_name = name.replace('.','')
+ self.m_name2s_name.update({name:s_name})
+ self.register_buffer(s_name,p.clone().detach().data)
+
+ self.collected_params = []
+
+ def forward(self,model):
+ decay = self.decay
+
+ if self.num_updates >= 0:
+ self.num_updates += 1
+ decay = min(self.decay,(1 + self.num_updates) / (10 + self.num_updates))
+
+ one_minus_decay = 1.0 - decay
+
+ with torch.no_grad():
+ m_param = dict(model.named_parameters())
+ shadow_params = dict(self.named_buffers())
+
+ for key in m_param:
+ if m_param[key].requires_grad:
+ sname = self.m_name2s_name[key]
+ shadow_params[sname] = shadow_params[sname].type_as(m_param[key])
+ shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key]))
+ else:
+ assert not key in self.m_name2s_name
+
+ def copy_to(self, model):
+ m_param = dict(model.named_parameters())
+ shadow_params = dict(self.named_buffers())
+ for key in m_param:
+ if m_param[key].requires_grad:
+ m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data)
+ else:
+ assert not key in self.m_name2s_name
+
+ def store(self, parameters):
+ """
+ Save the current parameters for restoring later.
+ Args:
+ parameters: Iterable of `torch.nn.Parameter`; the parameters to be
+ temporarily stored.
+ """
+ self.collected_params = [param.clone() for param in parameters]
+
+ def restore(self, parameters):
+ """
+ Restore the parameters stored with the `store` method.
+ Useful to validate the model with EMA parameters without affecting the
+ original optimization process. Store the parameters before the
+ `copy_to` method. After validation (or model saving), use this to
+ restore the former parameters.
+ Args:
+ parameters: Iterable of `torch.nn.Parameter`; the parameters to be
+ updated with the stored parameters.
+ """
+ for c_param, param in zip(self.collected_params, parameters):
+ param.data.copy_(c_param.data)
diff --git a/lvdm/models/autoencoder.py b/lvdm/models/autoencoder.py
new file mode 100644
index 0000000000000000000000000000000000000000..869f1b1651da605d9868acded3fdf3cc0e1c6f87
--- /dev/null
+++ b/lvdm/models/autoencoder.py
@@ -0,0 +1,221 @@
+import os
+from contextlib import contextmanager
+
+import numpy as np
+import pytorch_lightning as pl
+import torch
+import torch.nn.functional as F
+from einops import rearrange
+
+from lvdm.distributions import DiagonalGaussianDistribution
+from lvdm.modules.networks.ae_modules import Decoder, Encoder
+from utils.utils import instantiate_from_config
+
+
+class AutoencoderKL(pl.LightningModule):
+ def __init__(self,
+ ddconfig,
+ lossconfig,
+ embed_dim,
+ ckpt_path=None,
+ ignore_keys=[],
+ image_key="image",
+ colorize_nlabels=None,
+ monitor=None,
+ test=False,
+ logdir=None,
+ input_dim=4,
+ test_args=None,
+ ):
+ super().__init__()
+ self.image_key = image_key
+ self.encoder = Encoder(**ddconfig)
+ self.decoder = Decoder(**ddconfig)
+ self.loss = instantiate_from_config(lossconfig)
+ assert ddconfig["double_z"]
+ self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1)
+ self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
+ self.embed_dim = embed_dim
+ self.input_dim = input_dim
+ self.test = test
+ self.test_args = test_args
+ self.logdir = logdir
+ if colorize_nlabels is not None:
+ assert type(colorize_nlabels)==int
+ self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
+ if monitor is not None:
+ self.monitor = monitor
+ if ckpt_path is not None:
+ self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
+ if self.test:
+ self.init_test()
+
+ def init_test(self,):
+ self.test = True
+ save_dir = os.path.join(self.logdir, "test")
+ if 'ckpt' in self.test_args:
+ ckpt_name = os.path.basename(self.test_args.ckpt).split('.ckpt')[0] + f'_epoch{self._cur_epoch}'
+ self.root = os.path.join(save_dir, ckpt_name)
+ else:
+ self.root = save_dir
+ if 'test_subdir' in self.test_args:
+ self.root = os.path.join(save_dir, self.test_args.test_subdir)
+
+ self.root_zs = os.path.join(self.root, "zs")
+ self.root_dec = os.path.join(self.root, "reconstructions")
+ self.root_inputs = os.path.join(self.root, "inputs")
+ os.makedirs(self.root, exist_ok=True)
+
+ if self.test_args.save_z:
+ os.makedirs(self.root_zs, exist_ok=True)
+ if self.test_args.save_reconstruction:
+ os.makedirs(self.root_dec, exist_ok=True)
+ if self.test_args.save_input:
+ os.makedirs(self.root_inputs, exist_ok=True)
+ assert(self.test_args is not None)
+ self.test_maximum = getattr(self.test_args, 'test_maximum', None)
+ self.count = 0
+ self.eval_metrics = {}
+ self.decodes = []
+ self.save_decode_samples = 2048
+
+ def init_from_ckpt(self, path, ignore_keys=list()):
+ sd = torch.load(path, map_location="cpu")
+ try:
+ self._cur_epoch = sd['epoch']
+ sd = sd["state_dict"]
+ except:
+ self._cur_epoch = 'null'
+ keys = list(sd.keys())
+ for k in keys:
+ for ik in ignore_keys:
+ if k.startswith(ik):
+ print("Deleting key {} from state_dict.".format(k))
+ del sd[k]
+ self.load_state_dict(sd, strict=False)
+ # self.load_state_dict(sd, strict=True)
+ print(f"Restored from {path}")
+
+ def encode(self, x, **kwargs):
+
+ h = self.encoder(x)
+ moments = self.quant_conv(h)
+ posterior = DiagonalGaussianDistribution(moments)
+ return posterior
+
+ def decode(self, z, **kwargs):
+ z = self.post_quant_conv(z)
+ dec = self.decoder(z)
+ return dec
+
+ def forward(self, input, sample_posterior=True):
+ posterior = self.encode(input)
+ if sample_posterior:
+ z = posterior.sample()
+ else:
+ z = posterior.mode()
+ dec = self.decode(z)
+ return dec, posterior
+
+ def get_input(self, batch, k):
+ x = batch[k]
+ if x.dim() == 5 and self.input_dim == 4:
+ b,c,t,h,w = x.shape
+ self.b = b
+ self.t = t
+ x = rearrange(x, 'b c t h w -> (b t) c h w')
+
+ return x
+
+ def training_step(self, batch, batch_idx, optimizer_idx):
+ inputs = self.get_input(batch, self.image_key)
+ reconstructions, posterior = self(inputs)
+
+ if optimizer_idx == 0:
+ # train encoder+decoder+logvar
+ aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
+ last_layer=self.get_last_layer(), split="train")
+ self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
+ self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False)
+ return aeloss
+
+ if optimizer_idx == 1:
+ # train the discriminator
+ discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
+ last_layer=self.get_last_layer(), split="train")
+
+ self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
+ self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False)
+ return discloss
+
+ def validation_step(self, batch, batch_idx):
+ inputs = self.get_input(batch, self.image_key)
+ reconstructions, posterior = self(inputs)
+ aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step,
+ last_layer=self.get_last_layer(), split="val")
+
+ discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step,
+ last_layer=self.get_last_layer(), split="val")
+
+ self.log("val/rec_loss", log_dict_ae["val/rec_loss"])
+ self.log_dict(log_dict_ae)
+ self.log_dict(log_dict_disc)
+ return self.log_dict
+
+ def configure_optimizers(self):
+ lr = self.learning_rate
+ opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
+ list(self.decoder.parameters())+
+ list(self.quant_conv.parameters())+
+ list(self.post_quant_conv.parameters()),
+ lr=lr, betas=(0.5, 0.9))
+ opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
+ lr=lr, betas=(0.5, 0.9))
+ return [opt_ae, opt_disc], []
+
+ def get_last_layer(self):
+ return self.decoder.conv_out.weight
+
+ @torch.no_grad()
+ def log_images(self, batch, only_inputs=False, **kwargs):
+ log = dict()
+ x = self.get_input(batch, self.image_key)
+ x = x.to(self.device)
+ if not only_inputs:
+ xrec, posterior = self(x)
+ if x.shape[1] > 3:
+ # colorize with random projection
+ assert xrec.shape[1] > 3
+ x = self.to_rgb(x)
+ xrec = self.to_rgb(xrec)
+ log["samples"] = self.decode(torch.randn_like(posterior.sample()))
+ log["reconstructions"] = xrec
+ log["inputs"] = x
+ return log
+
+ def to_rgb(self, x):
+ assert self.image_key == "segmentation"
+ if not hasattr(self, "colorize"):
+ self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
+ x = F.conv2d(x, weight=self.colorize)
+ x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
+ return x
+
+class IdentityFirstStage(torch.nn.Module):
+ def __init__(self, *args, vq_interface=False, **kwargs):
+ self.vq_interface = vq_interface # TODO: Should be true by default but check to not break older stuff
+ super().__init__()
+
+ def encode(self, x, *args, **kwargs):
+ return x
+
+ def decode(self, x, *args, **kwargs):
+ return x
+
+ def quantize(self, x, *args, **kwargs):
+ if self.vq_interface:
+ return x, None, [None, None, None]
+ return x
+
+ def forward(self, x, *args, **kwargs):
+ return x
\ No newline at end of file
diff --git a/lvdm/models/ddpm3d.py b/lvdm/models/ddpm3d.py
new file mode 100644
index 0000000000000000000000000000000000000000..56c0b75235b83a9aab0670a41a5a9224a429f5fc
--- /dev/null
+++ b/lvdm/models/ddpm3d.py
@@ -0,0 +1,1085 @@
+"""
+wild mixture of
+https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py
+https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
+https://github.com/CompVis/taming-transformers
+-- merci
+"""
+
+import logging
+import os
+import random
+from contextlib import contextmanager
+from functools import partial
+
+import numpy as np
+from einops import rearrange, repeat
+from tqdm import tqdm
+
+mainlogger = logging.getLogger('mainlogger')
+
+import pytorch_lightning as pl
+import torch
+import torch.nn as nn
+from pytorch_lightning.utilities import rank_zero_only
+from torch.optim.lr_scheduler import CosineAnnealingLR, LambdaLR
+from torchvision.utils import make_grid
+
+from lvdm.basics import disabled_train
+from lvdm.common import default, exists, extract_into_tensor, noise_like
+from lvdm.distributions import DiagonalGaussianDistribution, normal_kl
+from lvdm.ema import LitEma
+from lvdm.models.samplers.ddim import DDIMSampler
+from lvdm.models.utils_diffusion import make_beta_schedule
+from utils.utils import instantiate_from_config
+
+__conditioning_keys__ = {'concat': 'c_concat',
+ 'crossattn': 'c_crossattn',
+ 'adm': 'y'}
+
+class DDPM(pl.LightningModule):
+ # classic DDPM with Gaussian diffusion, in image space
+ def __init__(self,
+ unet_config,
+ timesteps=1000,
+ beta_schedule="linear",
+ loss_type="l2",
+ ckpt_path=None,
+ ignore_keys=[],
+ load_only_unet=False,
+ monitor=None,
+ use_ema=True,
+ first_stage_key="image",
+ image_size=256,
+ channels=3,
+ log_every_t=100,
+ clip_denoised=True,
+ linear_start=1e-4,
+ linear_end=2e-2,
+ cosine_s=8e-3,
+ given_betas=None,
+ original_elbo_weight=0.,
+ v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
+ l_simple_weight=1.,
+ conditioning_key=None,
+ parameterization="eps", # all assuming fixed variance schedules
+ scheduler_config=None,
+ use_positional_encodings=False,
+ learn_logvar=False,
+ logvar_init=0.,
+ ):
+ super().__init__()
+ assert parameterization in ["eps", "x0"], 'currently only supporting "eps" and "x0"'
+ self.parameterization = parameterization
+ mainlogger.info(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode")
+ self.cond_stage_model = None
+ self.clip_denoised = clip_denoised
+ self.log_every_t = log_every_t
+ self.first_stage_key = first_stage_key
+ self.channels = channels
+ self.temporal_length = unet_config.params.temporal_length
+ self.image_size = image_size # try conv?
+ if isinstance(self.image_size, int):
+ self.image_size = [self.image_size, self.image_size]
+ self.use_positional_encodings = use_positional_encodings
+ self.model = DiffusionWrapper(unet_config, conditioning_key)
+ #count_params(self.model, verbose=True)
+ self.use_ema = use_ema
+ if self.use_ema:
+ self.model_ema = LitEma(self.model)
+ mainlogger.info(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
+
+ self.use_scheduler = scheduler_config is not None
+ if self.use_scheduler:
+ self.scheduler_config = scheduler_config
+
+ self.v_posterior = v_posterior
+ self.original_elbo_weight = original_elbo_weight
+ self.l_simple_weight = l_simple_weight
+
+ if monitor is not None:
+ self.monitor = monitor
+ if ckpt_path is not None:
+ self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet)
+
+ self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps,
+ linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
+
+ self.loss_type = loss_type
+
+ self.learn_logvar = learn_logvar
+ self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
+ if self.learn_logvar:
+ self.logvar = nn.Parameter(self.logvar, requires_grad=True)
+
+ def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
+ linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
+ if exists(given_betas):
+ betas = given_betas
+ else:
+ betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
+ cosine_s=cosine_s)
+ alphas = 1. - betas
+ alphas_cumprod = np.cumprod(alphas, axis=0)
+ alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
+
+ timesteps, = betas.shape
+ self.num_timesteps = int(timesteps)
+ self.linear_start = linear_start
+ self.linear_end = linear_end
+ assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
+
+ to_torch = partial(torch.tensor, dtype=torch.float32)
+
+ self.register_buffer('betas', to_torch(betas))
+ self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
+ self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
+
+ # calculations for diffusion q(x_t | x_{t-1}) and others
+ self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
+ self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
+ self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
+ self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
+ self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
+
+ # calculations for posterior q(x_{t-1} | x_t, x_0)
+ posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / (
+ 1. - alphas_cumprod) + self.v_posterior * betas
+ # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
+ self.register_buffer('posterior_variance', to_torch(posterior_variance))
+ # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
+ self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
+ self.register_buffer('posterior_mean_coef1', to_torch(
+ betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
+ self.register_buffer('posterior_mean_coef2', to_torch(
+ (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
+
+ if self.parameterization == "eps":
+ lvlb_weights = self.betas ** 2 / (
+ 2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod))
+ elif self.parameterization == "x0":
+ lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod))
+ else:
+ raise NotImplementedError("mu not supported")
+ # TODO how to choose this term
+ lvlb_weights[0] = lvlb_weights[1]
+ self.register_buffer('lvlb_weights', lvlb_weights, persistent=False)
+ assert not torch.isnan(self.lvlb_weights).all()
+
+ @contextmanager
+ def ema_scope(self, context=None):
+ if self.use_ema:
+ self.model_ema.store(self.model.parameters())
+ self.model_ema.copy_to(self.model)
+ if context is not None:
+ mainlogger.info(f"{context}: Switched to EMA weights")
+ try:
+ yield None
+ finally:
+ if self.use_ema:
+ self.model_ema.restore(self.model.parameters())
+ if context is not None:
+ mainlogger.info(f"{context}: Restored training weights")
+
+ def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
+ sd = torch.load(path, map_location="cpu")
+ if "state_dict" in list(sd.keys()):
+ sd = sd["state_dict"]
+ keys = list(sd.keys())
+ for k in keys:
+ for ik in ignore_keys:
+ if k.startswith(ik):
+ mainlogger.info("Deleting key {} from state_dict.".format(k))
+ del sd[k]
+ missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
+ sd, strict=False)
+ mainlogger.info(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
+ if len(missing) > 0:
+ mainlogger.info(f"Missing Keys: {missing}")
+ if len(unexpected) > 0:
+ mainlogger.info(f"Unexpected Keys: {unexpected}")
+
+ def q_mean_variance(self, x_start, t):
+ """
+ Get the distribution q(x_t | x_0).
+ :param x_start: the [N x C x ...] tensor of noiseless inputs.
+ :param t: the number of diffusion steps (minus 1). Here, 0 means one step.
+ :return: A tuple (mean, variance, log_variance), all of x_start's shape.
+ """
+ mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start)
+ variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
+ log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape)
+ return mean, variance, log_variance
+
+ def predict_start_from_noise(self, x_t, t, noise):
+ return (
+ extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
+ extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
+ )
+
+ def q_posterior(self, x_start, x_t, t):
+ posterior_mean = (
+ extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start +
+ extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
+ )
+ posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
+ posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape)
+ return posterior_mean, posterior_variance, posterior_log_variance_clipped
+
+ def p_mean_variance(self, x, t, clip_denoised: bool):
+ model_out = self.model(x, t)
+ if self.parameterization == "eps":
+ x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
+ elif self.parameterization == "x0":
+ x_recon = model_out
+ if clip_denoised:
+ x_recon.clamp_(-1., 1.)
+
+ model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
+ return model_mean, posterior_variance, posterior_log_variance
+
+ @torch.no_grad()
+ def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
+ b, *_, device = *x.shape, x.device
+ model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised)
+ noise = noise_like(x.shape, device, repeat_noise)
+ # no noise when t == 0
+ nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
+
+ @torch.no_grad()
+ def p_sample_loop(self, shape, return_intermediates=False):
+ device = self.betas.device
+ b = shape[0]
+ img = torch.randn(shape, device=device)
+ intermediates = [img]
+ for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps):
+ img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long),
+ clip_denoised=self.clip_denoised)
+ if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
+ intermediates.append(img)
+ if return_intermediates:
+ return img, intermediates
+ return img
+
+ @torch.no_grad()
+ def sample(self, batch_size=16, return_intermediates=False):
+ image_size = self.image_size
+ channels = self.channels
+ return self.p_sample_loop((batch_size, channels, image_size, image_size),
+ return_intermediates=return_intermediates)
+
+ def q_sample(self, x_start, t, noise=None):
+ noise = default(noise, lambda: torch.randn_like(x_start))
+ return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
+
+ def get_loss(self, pred, target, mean=True):
+ if self.loss_type == 'l1':
+ loss = (target - pred).abs()
+ if mean:
+ loss = loss.mean()
+ elif self.loss_type == 'l2':
+ if mean:
+ loss = torch.nn.functional.mse_loss(target, pred)
+ else:
+ loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
+ else:
+ raise NotImplementedError("unknown loss type '{loss_type}'")
+
+ return loss
+
+ def p_losses(self, x_start, t, noise=None):
+ noise = default(noise, lambda: torch.randn_like(x_start))
+ x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
+ model_out = self.model(x_noisy, t)
+
+ loss_dict = {}
+ if self.parameterization == "eps":
+ target = noise
+ elif self.parameterization == "x0":
+ target = x_start
+ else:
+ raise NotImplementedError(f"Paramterization {self.parameterization} not yet supported")
+
+ loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3])
+
+ log_prefix = 'train' if self.training else 'val'
+
+ loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()})
+ loss_simple = loss.mean() * self.l_simple_weight
+
+ loss_vlb = (self.lvlb_weights[t] * loss).mean()
+ loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb})
+
+ loss = loss_simple + self.original_elbo_weight * loss_vlb
+
+ loss_dict.update({f'{log_prefix}/loss': loss})
+
+ return loss, loss_dict
+
+ def forward(self, x, *args, **kwargs):
+ # b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size
+ # assert h == img_size and w == img_size, f'height and width of image must be {img_size}'
+ t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
+ return self.p_losses(x, t, *args, **kwargs)
+
+ def get_input(self, batch, k):
+ x = batch[k]
+ '''
+ if len(x.shape) == 3:
+ x = x[..., None]
+ x = rearrange(x, 'b h w c -> b c h w')
+ '''
+ x = x.to(memory_format=torch.contiguous_format).float()
+ return x
+
+ def shared_step(self, batch):
+ x = self.get_input(batch, self.first_stage_key)
+ loss, loss_dict = self(x)
+ return loss, loss_dict
+
+ def training_step(self, batch, batch_idx):
+ loss, loss_dict = self.shared_step(batch)
+
+ self.log_dict(loss_dict, prog_bar=True,
+ logger=True, on_step=True, on_epoch=True)
+
+ self.log("global_step", self.global_step,
+ prog_bar=True, logger=True, on_step=True, on_epoch=False)
+
+ if self.use_scheduler:
+ lr = self.optimizers().param_groups[0]['lr']
+ self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False)
+
+ return loss
+
+ @torch.no_grad()
+ def validation_step(self, batch, batch_idx):
+ _, loss_dict_no_ema = self.shared_step(batch)
+ with self.ema_scope():
+ _, loss_dict_ema = self.shared_step(batch)
+ loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema}
+ self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
+ self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
+
+ def on_train_batch_end(self, *args, **kwargs):
+ if self.use_ema:
+ self.model_ema(self.model)
+
+ def _get_rows_from_list(self, samples):
+ n_imgs_per_row = len(samples)
+ denoise_grid = rearrange(samples, 'n b c h w -> b n c h w')
+ denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
+ denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
+ return denoise_grid
+
+ @torch.no_grad()
+ def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs):
+ log = dict()
+ x = self.get_input(batch, self.first_stage_key)
+ N = min(x.shape[0], N)
+ n_row = min(x.shape[0], n_row)
+ x = x.to(self.device)[:N]
+ log["inputs"] = x
+
+ # get diffusion row
+ diffusion_row = list()
+ x_start = x[:n_row]
+
+ for t in range(self.num_timesteps):
+ if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
+ t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
+ t = t.to(self.device).long()
+ noise = torch.randn_like(x_start)
+ x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
+ diffusion_row.append(x_noisy)
+
+ log["diffusion_row"] = self._get_rows_from_list(diffusion_row)
+
+ if sample:
+ # get denoise row
+ with self.ema_scope("Plotting"):
+ samples, denoise_row = self.sample(batch_size=N, return_intermediates=True)
+
+ log["samples"] = samples
+ log["denoise_row"] = self._get_rows_from_list(denoise_row)
+
+ if return_keys:
+ if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
+ return log
+ else:
+ return {key: log[key] for key in return_keys}
+ return log
+
+ def configure_optimizers(self):
+ lr = self.learning_rate
+ params = list(self.model.parameters())
+ if self.learn_logvar:
+ params = params + [self.logvar]
+ opt = torch.optim.AdamW(params, lr=lr)
+ return opt
+
+
+class LatentDiffusion(DDPM):
+ """main class"""
+ def __init__(self,
+ first_stage_config,
+ cond_stage_config,
+ num_timesteps_cond=None,
+ cond_stage_key="caption",
+ cond_stage_trainable=False,
+ cond_stage_forward=None,
+ conditioning_key=None,
+ uncond_prob=0.2,
+ uncond_type="empty_seq",
+ scale_factor=1.0,
+ scale_by_std=False,
+ # added for LVDM
+ encoder_type="2d",
+ frame_cond=None,
+ only_model=False,
+ logdir=None,
+ empty_params_only=False,
+ *args, **kwargs):
+ self.num_timesteps_cond = default(num_timesteps_cond, 1)
+ self.scale_by_std = scale_by_std
+ assert self.num_timesteps_cond <= kwargs['timesteps']
+ # for backwards compatibility after implementation of DiffusionWrapper
+ ckpt_path = kwargs.pop("ckpt_path", None)
+ ignore_keys = kwargs.pop("ignore_keys", [])
+ conditioning_key = default(conditioning_key, 'crossattn')
+ super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
+
+ self.cond_stage_trainable = cond_stage_trainable
+ self.cond_stage_key = cond_stage_key
+ self.empty_params_only = empty_params_only
+ try:
+ self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
+ except:
+ self.num_downs = 0
+ if not scale_by_std:
+ self.scale_factor = scale_factor
+ else:
+ self.register_buffer('scale_factor', torch.tensor(scale_factor))
+ self.instantiate_first_stage(first_stage_config)
+ self.instantiate_cond_stage(cond_stage_config)
+ self.first_stage_config = first_stage_config
+ self.cond_stage_config = cond_stage_config
+ self.clip_denoised = False
+
+ self.cond_stage_forward = cond_stage_forward
+ self.encoder_type = encoder_type
+ assert(encoder_type in ["2d", "3d"])
+ self.uncond_prob = uncond_prob
+ self.classifier_free_guidance = True if uncond_prob > 0 else False
+ assert(uncond_type in ["zero_embed", "empty_seq"])
+ self.uncond_type = uncond_type
+
+ ## future frame prediction
+ self.frame_cond = frame_cond
+ if self.frame_cond:
+ # frame_len = self.model.diffusion_model.temporal_length
+ frame_len = self.temporal_length
+ cond_mask = torch.zeros(frame_len, dtype=torch.float32)
+ cond_mask[:self.frame_cond] = 1.0
+ ## b,c,t,h,w
+ self.cond_mask = cond_mask[None,None,:,None,None]
+ mainlogger.info("---training for %d-frame conditoning T2V"%(self.frame_cond))
+ else:
+ self.cond_mask = None
+
+ self.restarted_from_ckpt = False
+ if ckpt_path is not None:
+ self.init_from_ckpt(ckpt_path, ignore_keys, only_model=only_model)
+ self.restarted_from_ckpt = True
+
+ self.logdir = logdir
+
+ def make_cond_schedule(self, ):
+ self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
+ ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
+ self.cond_ids[:self.num_timesteps_cond] = ids
+
+ @rank_zero_only
+ @torch.no_grad()
+ def on_train_batch_start(self, batch, batch_idx, dataloader_idx=None):
+ # only for very first batch, reset the self.scale_factor
+ if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and \
+ not self.restarted_from_ckpt:
+ assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously'
+ # set rescale weight to 1./std of encodings
+ mainlogger.info("### USING STD-RESCALING ###")
+ x = super().get_input(batch, self.first_stage_key)
+ x = x.to(self.device)
+ encoder_posterior = self.encode_first_stage(x)
+ z = self.get_first_stage_encoding(encoder_posterior).detach()
+ del self.scale_factor
+ self.register_buffer('scale_factor', 1. / z.flatten().std())
+ mainlogger.info(f"setting self.scale_factor to {self.scale_factor}")
+ mainlogger.info("### USING STD-RESCALING ###")
+ mainlogger.info(f"std={z.flatten().std()}")
+
+ def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
+ linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
+ super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s)
+
+ self.shorten_cond_schedule = self.num_timesteps_cond > 1
+ if self.shorten_cond_schedule:
+ self.make_cond_schedule()
+
+ def instantiate_first_stage(self, config):
+ model = instantiate_from_config(config)
+ self.first_stage_model = model.eval()
+ self.first_stage_model.train = disabled_train
+ for param in self.first_stage_model.parameters():
+ param.requires_grad = False
+
+ def instantiate_cond_stage(self, config):
+ if not self.cond_stage_trainable:
+ model = instantiate_from_config(config)
+ self.cond_stage_model = model.eval()
+ self.cond_stage_model.train = disabled_train
+ for param in self.cond_stage_model.parameters():
+ param.requires_grad = False
+ else:
+ model = instantiate_from_config(config)
+ self.cond_stage_model = model
+
+ def get_learned_conditioning(self, c):
+ if self.cond_stage_forward is None:
+ if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
+ c = self.cond_stage_model.encode(c)
+ if isinstance(c, DiagonalGaussianDistribution):
+ c = c.mode()
+ else:
+ c = self.cond_stage_model(c)
+ else:
+ assert hasattr(self.cond_stage_model, self.cond_stage_forward)
+ c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
+ return c
+
+ def get_first_stage_encoding(self, encoder_posterior, noise=None):
+ if isinstance(encoder_posterior, DiagonalGaussianDistribution):
+ z = encoder_posterior.sample(noise=noise)
+ elif isinstance(encoder_posterior, torch.Tensor):
+ z = encoder_posterior
+ else:
+ raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
+ return self.scale_factor * z
+
+ @torch.no_grad()
+ def encode_first_stage(self, x):
+ if self.encoder_type == "2d" and x.dim() == 5:
+ return self.encode_first_stage_2DAE(x)
+ encoder_posterior = self.first_stage_model.encode(x)
+ results = self.get_first_stage_encoding(encoder_posterior).detach()
+ return results
+
+ def encode_first_stage_2DAE(self, x):
+ """encode frame by frame"""
+ b, _, t, _, _ = x.shape
+ results = torch.cat([self.get_first_stage_encoding(self.first_stage_model.encode(x[:,:,i])).detach().unsqueeze(2) for i in range(t)], dim=2)
+ return results
+
+ def decode_first_stage_2DAE(self, z, **kwargs):
+ """decode frame by frame"""
+ _, _, t, _, _ = z.shape
+ results = torch.cat([self.first_stage_model.decode(z[:,:,i], **kwargs).unsqueeze(2) for i in range(t)], dim=2)
+ return results
+
+ def _decode_core(self, z, **kwargs):
+ z = 1. / self.scale_factor * z
+
+ if self.encoder_type == "2d" and z.dim() == 5:
+ return self.decode_first_stage_2DAE(z)
+ results = self.first_stage_model.decode(z, **kwargs)
+ return results
+
+ @torch.no_grad()
+ def decode_first_stage(self, z, **kwargs):
+ return self._decode_core(z, **kwargs)
+
+ def differentiable_decode_first_stage(self, z, **kwargs):
+ """same as decode_first_stage but without decorator"""
+ return self._decode_core(z, **kwargs)
+
+ @torch.no_grad()
+ def get_batch_input(self, batch, random_uncond, return_first_stage_outputs=False, return_original_cond=False, is_imgbatch=False):
+ ## image/video shape: b, c, t, h, w
+ data_key = 'jpg' if is_imgbatch else self.first_stage_key
+ x = super().get_input(batch, data_key)
+ if is_imgbatch:
+ ## pack image as video
+ #x = x[:,:,None,:,:]
+ b = x.shape[0] // self.temporal_length
+ x = rearrange(x, '(b t) c h w -> b c t h w', b=b, t=self.temporal_length)
+ x_ori = x
+ ## encode video frames x to z via a 2D encoder
+ z = self.encode_first_stage(x)
+
+ ## get caption condition
+ cond_key = 'txt' if is_imgbatch else self.cond_stage_key
+ cond = batch[cond_key]
+ if random_uncond and self.uncond_type == 'empty_seq':
+ for i, ci in enumerate(cond):
+ if random.random() < self.uncond_prob:
+ cond[i] = ""
+ if isinstance(cond, dict) or isinstance(cond, list):
+ cond_emb = self.get_learned_conditioning(cond)
+ else:
+ cond_emb = self.get_learned_conditioning(cond.to(self.device))
+ if random_uncond and self.uncond_type == 'zero_embed':
+ for i, ci in enumerate(cond):
+ if random.random() < self.uncond_prob:
+ cond_emb[i] = torch.zeros_like(ci)
+
+ out = [z, cond_emb]
+ ## optional output: self-reconst or caption
+ if return_first_stage_outputs:
+ xrec = self.decode_first_stage(z)
+ out.extend([x_ori, xrec])
+ if return_original_cond:
+ out.append(cond)
+
+ return out
+
+ def forward(self, x, c, **kwargs):
+ if 't' in kwargs:
+ t = kwargs.pop('t')
+ else:
+ t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
+ return self.p_losses(x, c, t, **kwargs)
+
+ def shared_step(self, batch, random_uncond, **kwargs):
+ is_imgbatch = False
+ if "loader_img" in batch.keys():
+ ratio = 10.0 / self.temporal_length
+ if random.uniform(0.,10.) < ratio:
+ is_imgbatch = True
+ batch = batch["loader_img"]
+ else:
+ batch = batch["loader_video"]
+ else:
+ pass
+
+ x, c = self.get_batch_input(batch, random_uncond=random_uncond, is_imgbatch=is_imgbatch)
+ loss, loss_dict = self(x, c, is_imgbatch=is_imgbatch, **kwargs)
+ return loss, loss_dict
+
+ def apply_model(self, x_noisy, t, cond, **kwargs):
+ if isinstance(cond, dict):
+ # hybrid case, cond is exptected to be a dict
+ pass
+ else:
+ if not isinstance(cond, list):
+ cond = [cond]
+ key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn'
+ cond = {key: cond}
+
+ x_recon = self.model(x_noisy, t, **cond, **kwargs)
+
+ if isinstance(x_recon, tuple):
+ return x_recon[0]
+ else:
+ return x_recon
+
+ def p_losses(self, x_start, cond, t, noise=None, **kwargs):
+ noise = default(noise, lambda: torch.randn_like(x_start))
+ x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
+ if self.frame_cond:
+ if self.cond_mask.device is not self.device:
+ self.cond_mask = self.cond_mask.to(self.device)
+ ## condition on fist few frames
+ x_noisy = x_start * self.cond_mask + (1.-self.cond_mask) * x_noisy
+ model_output = self.apply_model(x_noisy, t, cond, **kwargs)
+
+ loss_dict = {}
+ prefix = 'train' if self.training else 'val'
+
+ if self.parameterization == "x0":
+ target = x_start
+ elif self.parameterization == "eps":
+ target = noise
+ else:
+ raise NotImplementedError()
+
+ if self.frame_cond:
+ ## [b,c,t,h,w]: only care about the predicted part (avoid disturbance)
+ model_output = model_output[:,:,self.frame_cond:,:,:]
+ target = target[:,:,self.frame_cond:,:,:]
+
+ loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3, 4])
+
+ if torch.isnan(loss_simple).any():
+ print(f"loss_simple exists nan: {loss_simple}")
+ # import pdb; pdb.set_trace()
+ for i in range(loss_simple.shape[0]):
+ if torch.isnan(loss_simple[i]).any():
+ loss_simple[i] = torch.zeros_like(loss_simple[i])
+
+ loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()})
+
+ if self.logvar.device is not self.device:
+ self.logvar = self.logvar.to(self.device)
+ logvar_t = self.logvar[t]
+ # logvar_t = self.logvar[t.item()].to(self.device) # device conflict when ddp shared
+ loss = loss_simple / torch.exp(logvar_t) + logvar_t
+ # loss = loss_simple / torch.exp(self.logvar) + self.logvar
+ if self.learn_logvar:
+ loss_dict.update({f'{prefix}/loss_gamma': loss.mean()})
+ loss_dict.update({'logvar': self.logvar.data.mean()})
+
+ loss = self.l_simple_weight * loss.mean()
+
+ if self.original_elbo_weight > 0:
+ loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3, 4))
+ loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
+ loss_dict.update({f'{prefix}/loss_vlb': loss_vlb})
+ loss += (self.original_elbo_weight * loss_vlb)
+ loss_dict.update({f'{prefix}/loss': loss})
+
+ return loss, loss_dict
+
+ def training_step(self, batch, batch_idx):
+ loss, loss_dict = self.shared_step(batch, random_uncond=self.classifier_free_guidance)
+ ## sync_dist | rank_zero_only
+ self.log_dict(loss_dict, prog_bar=True, logger=True, on_step=True, on_epoch=True, sync_dist=False)
+ #self.log("epoch/global_step", self.global_step.float(), prog_bar=True, logger=True, on_step=True, on_epoch=False)
+ '''
+ if self.use_scheduler:
+ lr = self.optimizers().param_groups[0]['lr']
+ self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False, rank_zero_only=True)
+ '''
+ if (batch_idx+1) % self.log_every_t == 0:
+ mainlogger.info(f"batch:{batch_idx}|epoch:{self.current_epoch} [globalstep:{self.global_step}]: loss={loss}")
+ return loss
+
+
+ def _get_denoise_row_from_list(self, samples, desc=''):
+ denoise_row = []
+ for zd in tqdm(samples, desc=desc):
+ denoise_row.append(self.decode_first_stage(zd.to(self.device)))
+ n_log_timesteps = len(denoise_row)
+
+ denoise_row = torch.stack(denoise_row) # n_log_timesteps, b, C, H, W
+
+ if denoise_row.dim() == 5:
+ # img, num_imgs= n_log_timesteps * bs, grid_size=[bs,n_log_timesteps]
+ # 先batch再n,grid时候一行是一个sample的不同steps,batch是列,行是n
+ denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w')
+ denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
+ denoise_grid = make_grid(denoise_grid, nrow=n_log_timesteps)
+ elif denoise_row.dim() == 6:
+ # video, grid_size=[n_log_timesteps*bs, t]
+ video_length = denoise_row.shape[3]
+ denoise_grid = rearrange(denoise_row, 'n b c t h w -> b n c t h w')
+ denoise_grid = rearrange(denoise_grid, 'b n c t h w -> (b n) c t h w')
+ denoise_grid = rearrange(denoise_grid, 'n c t h w -> (n t) c h w')
+ denoise_grid = make_grid(denoise_grid, nrow=video_length)
+ else:
+ raise ValueError
+
+ return denoise_grid
+
+ @torch.no_grad()
+ def log_images(self, batch, sample=True, ddim_steps=200, ddim_eta=1., plot_denoise_rows=False, \
+ unconditional_guidance_scale=1.0, **kwargs):
+ """ log images for LatentDiffusion """
+ ## TBD: currently, classifier_free_guidance sampling is only supported by DDIM
+ use_ddim = ddim_steps is not None
+ log = dict()
+ z, c, x, xrec, xc = self.get_batch_input(batch, random_uncond=False,
+ return_first_stage_outputs=True,
+ return_original_cond=True)
+ N, _, T, H, W = x.shape
+ log["inputs"] = x
+ log["reconst"] = xrec
+ log["condition"] = xc
+
+ if sample:
+ # get uncond embedding for classifier-free guidance sampling
+ if unconditional_guidance_scale != 1.0:
+ if isinstance(c, dict):
+ c_cat, c_emb = c["c_concat"][0], c["c_crossattn"][0]
+ #log["condition_cat"] = c_cat
+ else:
+ c_emb = c
+
+ if self.uncond_type == "empty_seq":
+ prompts = N * [""]
+ uc = self.get_learned_conditioning(prompts)
+ elif self.uncond_type == "zero_embed":
+ uc = torch.zeros_like(c_emb)
+ ## hybrid case
+ if isinstance(c, dict):
+ uc_hybrid = {"c_concat": [c_cat], "c_crossattn": [uc]}
+ uc = uc_hybrid
+ else:
+ uc = None
+
+ with self.ema_scope("Plotting"):
+ samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
+ ddim_steps=ddim_steps,eta=ddim_eta,
+ unconditional_guidance_scale=unconditional_guidance_scale,
+ unconditional_conditioning=uc, mask=self.cond_mask, x0=z, **kwargs)
+ x_samples = self.decode_first_stage(samples)
+ log["samples"] = x_samples
+
+ if plot_denoise_rows:
+ denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
+ log["denoise_row"] = denoise_grid
+
+ return log
+
+
+ def p_mean_variance(self, x, c, t, clip_denoised: bool, return_x0=False, score_corrector=None, corrector_kwargs=None, **kwargs):
+ t_in = t
+ model_out = self.apply_model(x, t_in, c, **kwargs)
+
+ if score_corrector is not None:
+ assert self.parameterization == "eps"
+ model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs)
+
+ if self.parameterization == "eps":
+ x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
+ elif self.parameterization == "x0":
+ x_recon = model_out
+ else:
+ raise NotImplementedError()
+
+ if clip_denoised:
+ x_recon.clamp_(-1., 1.)
+
+ model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
+
+ if return_x0:
+ return model_mean, posterior_variance, posterior_log_variance, x_recon
+ else:
+ return model_mean, posterior_variance, posterior_log_variance
+
+ @torch.no_grad()
+ def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False, return_x0=False, \
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, **kwargs):
+ b, *_, device = *x.shape, x.device
+ outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised, return_x0=return_x0, \
+ score_corrector=score_corrector, corrector_kwargs=corrector_kwargs, **kwargs)
+ if return_x0:
+ model_mean, _, model_log_variance, x0 = outputs
+ else:
+ model_mean, _, model_log_variance = outputs
+
+ noise = noise_like(x.shape, device, repeat_noise) * temperature
+ if noise_dropout > 0.:
+ noise = torch.nn.functional.dropout(noise, p=noise_dropout)
+ # no noise when t == 0
+ nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
+
+ if return_x0:
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
+ else:
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
+
+ @torch.no_grad()
+ def p_sample_loop(self, cond, shape, return_intermediates=False, x_T=None, verbose=True, callback=None, \
+ timesteps=None, mask=None, x0=None, img_callback=None, start_T=None, log_every_t=None, **kwargs):
+
+ if not log_every_t:
+ log_every_t = self.log_every_t
+ device = self.betas.device
+ b = shape[0]
+ # sample an initial noise
+ if x_T is None:
+ img = torch.randn(shape, device=device)
+ else:
+ img = x_T
+
+ intermediates = [img]
+ if timesteps is None:
+ timesteps = self.num_timesteps
+ if start_T is not None:
+ timesteps = min(timesteps, start_T)
+
+ iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(range(0, timesteps))
+
+ if mask is not None:
+ assert x0 is not None
+ assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match
+
+ for i in iterator:
+ ts = torch.full((b,), i, device=device, dtype=torch.long)
+ if self.shorten_cond_schedule:
+ assert self.model.conditioning_key != 'hybrid'
+ tc = self.cond_ids[ts].to(cond.device)
+ cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
+
+ img = self.p_sample(img, cond, ts, clip_denoised=self.clip_denoised, **kwargs)
+ if mask is not None:
+ img_orig = self.q_sample(x0, ts)
+ img = img_orig * mask + (1. - mask) * img
+
+ if i % log_every_t == 0 or i == timesteps - 1:
+ intermediates.append(img)
+ if callback: callback(i)
+ if img_callback: img_callback(img, i)
+
+ if return_intermediates:
+ return img, intermediates
+ return img
+
+ @torch.no_grad()
+ def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None, \
+ verbose=True, timesteps=None, mask=None, x0=None, shape=None, **kwargs):
+ if shape is None:
+ shape = (batch_size, self.channels, self.temporal_length, *self.image_size)
+ if cond is not None:
+ if isinstance(cond, dict):
+ cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
+ list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
+ else:
+ cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
+ return self.p_sample_loop(cond,
+ shape,
+ return_intermediates=return_intermediates, x_T=x_T,
+ verbose=verbose, timesteps=timesteps,
+ mask=mask, x0=x0, **kwargs)
+
+ @torch.no_grad()
+ def sample_log(self, cond, batch_size, ddim, ddim_steps, **kwargs):
+ if ddim:
+ ddim_sampler = DDIMSampler(self)
+ shape = (self.channels, self.temporal_length, *self.image_size)
+ kwargs.update({"clean_cond": True})
+ samples, intermediates =ddim_sampler.sample(ddim_steps, batch_size, shape, cond, verbose=False, **kwargs)
+
+ else:
+ samples, intermediates = self.sample(cond=cond, batch_size=batch_size, return_intermediates=True, **kwargs)
+
+ return samples, intermediates
+
+ def configure_optimizers(self):
+ """ configure_optimizers for LatentDiffusion """
+ lr = self.learning_rate
+ if self.empty_params_only and hasattr(self, "empty_paras"):
+ params = [p for n, p in self.model.named_parameters() if n in self.empty_paras]
+ print('self.empty_paras', len(self.empty_paras))
+ for n, p in self.model.named_parameters():
+ if n not in self.empty_paras:
+ p.requires_grad = False
+ mainlogger.info(f"@Training [{len(params)}] Empty Paramters ONLY.")
+ else:
+ params = list(self.model.parameters())
+ mainlogger.info(f"@Training [{len(params)}] Full Paramters.")
+
+ if self.learn_logvar:
+ mainlogger.info('Diffusion model optimizing logvar')
+ if isinstance(params[0], dict):
+ params.append({"params": [self.logvar]})
+ else:
+ params.append(self.logvar)
+
+ ## optimizer
+ optimizer = torch.optim.AdamW(params, lr=lr)
+ ## lr scheduler
+ if self.use_scheduler:
+ mainlogger.info("Setting up LambdaLR scheduler...")
+ lr_scheduler = self.configure_schedulers(optimizer)
+ return [optimizer], [lr_scheduler]
+
+ return optimizer
+
+ def configure_schedulers(self, optimizer):
+ assert 'target' in self.scheduler_config
+ scheduler_name = self.scheduler_config.target.split('.')[-1]
+ interval = self.scheduler_config.interval
+ frequency = self.scheduler_config.frequency
+ if scheduler_name == "LambdaLRScheduler":
+ scheduler = instantiate_from_config(self.scheduler_config)
+ scheduler.start_step = self.global_step
+ lr_scheduler = {
+ 'scheduler': LambdaLR(optimizer, lr_lambda=scheduler.schedule),
+ 'interval': interval,
+ 'frequency': frequency
+ }
+ elif scheduler_name == "CosineAnnealingLRScheduler":
+ scheduler = instantiate_from_config(self.scheduler_config)
+ decay_steps = scheduler.decay_steps
+ last_step = -1 if self.global_step == 0 else scheduler.start_step
+ lr_scheduler = {
+ 'scheduler': CosineAnnealingLR(optimizer, T_max=decay_steps, last_epoch=last_step),
+ 'interval': interval,
+ 'frequency': frequency
+ }
+ else:
+ raise NotImplementedError
+ return lr_scheduler
+
+
+class DiffusionWrapper(pl.LightningModule):
+ def __init__(self, diff_model_config, conditioning_key):
+ super().__init__()
+ self.diffusion_model = instantiate_from_config(diff_model_config)
+ self.conditioning_key = conditioning_key
+
+ def forward(self, x, t, c_concat: list = None, c_crossattn: list = None,
+ c_adm=None, s=None, mask=None, **kwargs):
+ # temporal_context = fps is foNone
+ if self.conditioning_key is None:
+ out = self.diffusion_model(x, t)
+ elif self.conditioning_key == 'concat':
+ xc = torch.cat([x] + c_concat, dim=1)
+ out = self.diffusion_model(xc, t, **kwargs)
+ elif self.conditioning_key == 'crossattn':
+ cc = torch.cat(c_crossattn, 1)
+ out = self.diffusion_model(x, t, context=cc, **kwargs)
+ elif self.conditioning_key == 'hybrid':
+ ## it is just right [b,c,t,h,w]: concatenate in channel dim
+ xc = torch.cat([x] + c_concat, dim=1)
+ cc = torch.cat(c_crossattn, 1)
+ out = self.diffusion_model(xc, t, context=cc, **kwargs)
+ elif self.conditioning_key == 'resblockcond':
+ cc = c_crossattn[0]
+ out = self.diffusion_model(x, t, context=cc)
+ elif self.conditioning_key == 'adm':
+ cc = c_crossattn[0]
+ out = self.diffusion_model(x, t, y=cc)
+ elif self.conditioning_key == 'hybrid-adm':
+ assert c_adm is not None
+ xc = torch.cat([x] + c_concat, dim=1)
+ cc = torch.cat(c_crossattn, 1)
+ out = self.diffusion_model(xc, t, context=cc, y=c_adm, **kwargs)
+ elif self.conditioning_key == 'hybrid-time':
+ assert s is not None
+ xc = torch.cat([x] + c_concat, dim=1)
+ cc = torch.cat(c_crossattn, 1)
+ out = self.diffusion_model(xc, t, context=cc, s=s)
+ elif self.conditioning_key == 'concat-time-mask':
+ # assert s is not None
+ # mainlogger.info('x & mask:',x.shape,c_concat[0].shape)
+ xc = torch.cat([x] + c_concat, dim=1)
+ out = self.diffusion_model(xc, t, context=None, s=s, mask=mask)
+ elif self.conditioning_key == 'concat-adm-mask':
+ # assert s is not None
+ # mainlogger.info('x & mask:',x.shape,c_concat[0].shape)
+ if c_concat is not None:
+ xc = torch.cat([x] + c_concat, dim=1)
+ else:
+ xc = x
+ out = self.diffusion_model(xc, t, context=None, y=s, mask=mask)
+ elif self.conditioning_key == 'hybrid-adm-mask':
+ cc = torch.cat(c_crossattn, 1)
+ if c_concat is not None:
+ xc = torch.cat([x] + c_concat, dim=1)
+ else:
+ xc = x
+ out = self.diffusion_model(xc, t, context=cc, y=s, mask=mask)
+ elif self.conditioning_key == 'hybrid-time-adm': # adm means y, e.g., class index
+ # assert s is not None
+ assert c_adm is not None
+ xc = torch.cat([x] + c_concat, dim=1)
+ cc = torch.cat(c_crossattn, 1)
+ out = self.diffusion_model(xc, t, context=cc, s=s, y=c_adm)
+ else:
+ raise NotImplementedError()
+
+ return out
\ No newline at end of file
diff --git a/lvdm/models/samplers/__init__.py b/lvdm/models/samplers/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/lvdm/models/samplers/ddim.py b/lvdm/models/samplers/ddim.py
new file mode 100644
index 0000000000000000000000000000000000000000..b961526e1b7c1f6269b91ef056734e43273bf239
--- /dev/null
+++ b/lvdm/models/samplers/ddim.py
@@ -0,0 +1,283 @@
+"""SAMPLING ONLY."""
+
+import numpy as np
+import torch
+from tqdm import tqdm
+
+from lvdm.common import noise_like
+from lvdm.models.utils_diffusion import (make_ddim_sampling_parameters,
+ make_ddim_timesteps)
+
+
+class DDIMSampler(object):
+ def __init__(self, model, schedule="linear", **kwargs):
+ super().__init__()
+ self.model = model
+ self.ddpm_num_timesteps = model.num_timesteps
+ self.schedule = schedule
+ self.counter = 0
+
+ def register_buffer(self, name, attr):
+ if type(attr) == torch.Tensor:
+ if attr.device != torch.device("cuda"):
+ attr = attr.to(torch.device("cuda"))
+ setattr(self, name, attr)
+
+ def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
+ self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
+ num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
+ alphas_cumprod = self.model.alphas_cumprod
+ assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
+ to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
+
+ self.register_buffer('betas', to_torch(self.model.betas))
+ self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
+ self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
+
+ # calculations for diffusion q(x_t | x_{t-1}) and others
+ self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
+ self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
+ self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
+ self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
+ self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
+
+ # ddim sampling parameters
+ ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
+ ddim_timesteps=self.ddim_timesteps,
+ eta=ddim_eta,verbose=verbose)
+ self.register_buffer('ddim_sigmas', ddim_sigmas)
+ self.register_buffer('ddim_alphas', ddim_alphas)
+ self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
+ self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
+ sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
+ (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
+ 1 - self.alphas_cumprod / self.alphas_cumprod_prev))
+ self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
+
+ @torch.no_grad()
+ def sample(self,
+ S,
+ batch_size,
+ shape,
+ conditioning=None,
+ callback=None,
+ normals_sequence=None,
+ img_callback=None,
+ quantize_x0=False,
+ eta=0.,
+ mask=None,
+ x0=None,
+ temperature=1.,
+ noise_dropout=0.,
+ score_corrector=None,
+ corrector_kwargs=None,
+ verbose=True,
+ schedule_verbose=False,
+ x_T=None,
+ log_every_t=100,
+ unconditional_guidance_scale=1.,
+ unconditional_conditioning=None,
+ # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
+ **kwargs
+ ):
+
+ # check condition bs
+ if conditioning is not None:
+ if isinstance(conditioning, dict):
+ try:
+ cbs = conditioning[list(conditioning.keys())[0]].shape[0]
+ except:
+ cbs = conditioning[list(conditioning.keys())[0]][0].shape[0]
+
+ if cbs != batch_size:
+ print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
+ else:
+ if conditioning.shape[0] != batch_size:
+ print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
+
+ self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=schedule_verbose)
+
+ # make shape
+ if len(shape) == 3:
+ C, H, W = shape
+ size = (batch_size, C, H, W)
+ elif len(shape) == 4:
+ C, T, H, W = shape
+ size = (batch_size, C, T, H, W)
+ # print(f'Data shape for DDIM sampling is {size}, eta {eta}')
+
+ samples, intermediates = self.ddim_sampling(conditioning, size,
+ callback=callback,
+ img_callback=img_callback,
+ quantize_denoised=quantize_x0,
+ mask=mask, x0=x0,
+ ddim_use_original_steps=False,
+ noise_dropout=noise_dropout,
+ temperature=temperature,
+ score_corrector=score_corrector,
+ corrector_kwargs=corrector_kwargs,
+ x_T=x_T,
+ log_every_t=log_every_t,
+ unconditional_guidance_scale=unconditional_guidance_scale,
+ unconditional_conditioning=unconditional_conditioning,
+ verbose=verbose,
+ **kwargs)
+ return samples, intermediates
+
+ @torch.no_grad()
+ def ddim_sampling(self, cond, shape,
+ x_T=None, ddim_use_original_steps=False,
+ callback=None, timesteps=None, quantize_denoised=False,
+ mask=None, x0=None, img_callback=None, log_every_t=100,
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
+ unconditional_guidance_scale=1., unconditional_conditioning=None, verbose=True,
+ **kwargs):
+ device = self.model.betas.device
+ b = shape[0]
+ if x_T is None:
+ img = torch.randn(shape, device=device)
+ else:
+ img = x_T
+
+ if timesteps is None:
+ timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
+ elif timesteps is not None and not ddim_use_original_steps:
+ subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
+ timesteps = self.ddim_timesteps[:subset_end]
+
+ intermediates = {'x_inter': [img], 'pred_x0': [img]}
+ time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps)
+ total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
+ if verbose:
+ iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
+ else:
+ iterator = time_range
+
+ clean_cond = kwargs.pop("clean_cond", False)
+ for i, step in enumerate(iterator):
+ index = total_steps - i - 1
+ ts = torch.full((b,), step, device=device, dtype=torch.long)
+
+ # use mask to blend noised original latent (img_orig) & new sampled latent (img)
+ if mask is not None:
+ assert x0 is not None
+ if clean_cond:
+ img_orig = x0
+ else:
+ img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
+ img = img_orig * mask + (1. - mask) * img # keep original & modify use img
+
+ outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
+ quantize_denoised=quantize_denoised, temperature=temperature,
+ noise_dropout=noise_dropout, score_corrector=score_corrector,
+ corrector_kwargs=corrector_kwargs,
+ unconditional_guidance_scale=unconditional_guidance_scale,
+ unconditional_conditioning=unconditional_conditioning,
+ **kwargs)
+
+ img, pred_x0 = outs
+ if callback: callback(i)
+ if img_callback: img_callback(pred_x0, i)
+
+ if index % log_every_t == 0 or index == total_steps - 1:
+ intermediates['x_inter'].append(img)
+ intermediates['pred_x0'].append(pred_x0)
+
+ return img, intermediates
+
+ @torch.no_grad()
+ def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
+ unconditional_guidance_scale=1., unconditional_conditioning=None,
+ uc_type=None, conditional_guidance_scale_temporal=None, **kwargs):
+ b, *_, device = *x.shape, x.device
+ if x.dim() == 5:
+ is_video = True
+ else:
+ is_video = False
+ # f=open('/apdcephfs_cq2/share_1290939/yingqinghe/code/LVDM-private/cfg_range_s5noclamp.txt','a')
+ # print(f't={t}, model input, min={torch.min(x)}, max={torch.max(x)}',file=f)
+ if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
+ e_t = self.model.apply_model(x, t, c, **kwargs) # unet denoiser
+ else:
+ # with unconditional condition
+ if isinstance(c, torch.Tensor):
+ un_kwargs = kwargs.copy()
+ if isinstance(unconditional_conditioning, dict):
+ for uk, uv in unconditional_conditioning.items():
+ if uk in un_kwargs:
+ un_kwargs[uk] = uv
+ unconditional_conditioning = unconditional_conditioning['uc']
+ if 'cond_T' in kwargs and t < kwargs['cond_T']:
+ if 'features_adapter' in kwargs:
+ kwargs.pop('features_adapter')
+ un_kwargs.pop('features_adapter')
+ # kwargs['features_adapter'] = None
+ # un_kwargs['features_adapter'] = None
+ # if 'pose_emb' in kwargs:
+ # kwargs.pop('pose_emb')
+ # un_kwargs.pop('pose_emb')
+ # kwargs['pose_emb'] = None
+ # un_kwargs['pose_emb'] = None
+ e_t = self.model.apply_model(x, t, c, **kwargs)
+ # e_t_uncond = self.model.apply_model(x, t, unconditional_conditioning, **kwargs)
+ e_t_uncond = self.model.apply_model(x, t, unconditional_conditioning, **un_kwargs)
+ elif isinstance(c, dict):
+ e_t = self.model.apply_model(x, t, c, **kwargs)
+ e_t_uncond = self.model.apply_model(x, t, unconditional_conditioning, **kwargs)
+ else:
+ raise NotImplementedError
+ # text cfg
+ if uc_type is None:
+ e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
+ else:
+ if uc_type == 'cfg_original':
+ e_t = e_t + unconditional_guidance_scale * (e_t - e_t_uncond)
+ elif uc_type == 'cfg_ours':
+ e_t = e_t + unconditional_guidance_scale * (e_t_uncond - e_t)
+ else:
+ raise NotImplementedError
+ # temporal guidance
+ if conditional_guidance_scale_temporal is not None:
+ e_t_temporal = self.model.apply_model(x, t, c, **kwargs)
+ e_t_image = self.model.apply_model(x, t, c, no_temporal_attn=True, **kwargs)
+ e_t = e_t + conditional_guidance_scale_temporal * (e_t_temporal - e_t_image)
+
+ if score_corrector is not None:
+ assert self.model.parameterization == "eps"
+ e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
+
+ alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
+ alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
+ sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
+ sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
+ # select parameters corresponding to the currently considered timestep
+
+ if is_video:
+ size = (b, 1, 1, 1, 1)
+ else:
+ size = (b, 1, 1, 1)
+ a_t = torch.full(size, alphas[index], device=device)
+ a_prev = torch.full(size, alphas_prev[index], device=device)
+ sigma_t = torch.full(size, sigmas[index], device=device)
+ sqrt_one_minus_at = torch.full(size, sqrt_one_minus_alphas[index],device=device)
+
+ # current prediction for x_0
+ pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
+ # print(f't={t}, pred_x0, min={torch.min(pred_x0)}, max={torch.max(pred_x0)}',file=f)
+ if quantize_denoised:
+ pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
+ # direction pointing to x_t
+ dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
+ # # norm pred_x0
+ # p=2
+ # s=()
+ # pred_x0 = pred_x0 - torch.max(torch.abs(pred_x0))
+
+ noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
+ if noise_dropout > 0.:
+ noise = torch.nn.functional.dropout(noise, p=noise_dropout)
+
+ x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
+
+ return x_prev, pred_x0
diff --git a/lvdm/models/utils_diffusion.py b/lvdm/models/utils_diffusion.py
new file mode 100644
index 0000000000000000000000000000000000000000..c57196e60754994ebd6d2afd741607d740604088
--- /dev/null
+++ b/lvdm/models/utils_diffusion.py
@@ -0,0 +1,105 @@
+import math
+import numpy as np
+from einops import repeat
+
+import torch
+import torch.nn.functional as F
+
+
+def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
+ """
+ Create sinusoidal timestep embeddings.
+ :param timesteps: a 1-D Tensor of N indices, one per batch element.
+ These may be fractional.
+ :param dim: the dimension of the output.
+ :param max_period: controls the minimum frequency of the embeddings.
+ :return: an [N x dim] Tensor of positional embeddings.
+ """
+ if not repeat_only:
+ half = dim // 2
+ freqs = torch.exp(
+ -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
+ ).to(device=timesteps.device)
+ args = timesteps[:, None].float() * freqs[None]
+ embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
+ if dim % 2:
+ embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
+ else:
+ embedding = repeat(timesteps, 'b -> b d', d=dim)
+ return embedding
+
+
+def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
+ if schedule == "linear":
+ betas = (
+ torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
+ )
+
+ elif schedule == "cosine":
+ timesteps = (
+ torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
+ )
+ alphas = timesteps / (1 + cosine_s) * np.pi / 2
+ alphas = torch.cos(alphas).pow(2)
+ alphas = alphas / alphas[0]
+ betas = 1 - alphas[1:] / alphas[:-1]
+ betas = np.clip(betas, a_min=0, a_max=0.999)
+
+ elif schedule == "sqrt_linear":
+ betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
+ elif schedule == "sqrt":
+ betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5
+ else:
+ raise ValueError(f"schedule '{schedule}' unknown.")
+ return betas.numpy()
+
+
+def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True):
+ if ddim_discr_method == 'uniform':
+ c = num_ddpm_timesteps // num_ddim_timesteps
+ ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
+ elif ddim_discr_method == 'quad':
+ ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int)
+ else:
+ raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"')
+
+ # assert ddim_timesteps.shape[0] == num_ddim_timesteps
+ # add one to get the final alpha values right (the ones from first scale to data during sampling)
+ steps_out = ddim_timesteps + 1
+ if verbose:
+ print(f'Selected timesteps for ddim sampler: {steps_out}')
+ return steps_out
+
+
+def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
+ # select alphas for computing the variance schedule
+ # print(f'ddim_timesteps={ddim_timesteps}, len_alphacums={len(alphacums)}')
+ alphas = alphacums[ddim_timesteps]
+ alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())
+
+ # according the the formula provided in https://arxiv.org/abs/2010.02502
+ sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
+ if verbose:
+ print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}')
+ print(f'For the chosen value of eta, which is {eta}, '
+ f'this results in the following sigma_t schedule for ddim sampler {sigmas}')
+ return sigmas, alphas, alphas_prev
+
+
+def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
+ """
+ Create a beta schedule that discretizes the given alpha_t_bar function,
+ which defines the cumulative product of (1-beta) over time from t = [0,1].
+ :param num_diffusion_timesteps: the number of betas to produce.
+ :param alpha_bar: a lambda that takes an argument t from 0 to 1 and
+ produces the cumulative product of (1-beta) up to that
+ part of the diffusion process.
+ :param max_beta: the maximum beta to use; use values lower than 1 to
+ prevent singularities.
+ """
+ betas = []
+ for i in range(num_diffusion_timesteps):
+ t1 = i / num_diffusion_timesteps
+ t2 = (i + 1) / num_diffusion_timesteps
+ betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
+ return np.array(betas)
\ No newline at end of file
diff --git a/lvdm/modules/attention.py b/lvdm/modules/attention.py
new file mode 100644
index 0000000000000000000000000000000000000000..01f593f21f50c3ecc12ad9b328b4ab40ce37422b
--- /dev/null
+++ b/lvdm/modules/attention.py
@@ -0,0 +1,428 @@
+import math
+from functools import partial
+from inspect import isfunction
+
+import torch
+import torch.nn.functional as F
+from einops import rearrange, repeat
+from torch import einsum, nn
+
+try:
+ import xformers
+ import xformers.ops
+ XFORMERS_IS_AVAILBLE = True
+except:
+ XFORMERS_IS_AVAILBLE = False
+from lvdm.basics import conv_nd, normalization, zero_module
+from lvdm.common import checkpoint, default, exists, init_, max_neg_value, uniq
+
+
+class RelativePosition(nn.Module):
+ """ https://github.com/evelinehong/Transformer_Relative_Position_PyTorch/blob/master/relative_position.py """
+
+ def __init__(self, num_units, max_relative_position):
+ super().__init__()
+ self.num_units = num_units
+ self.max_relative_position = max_relative_position
+ self.embeddings_table = nn.Parameter(torch.Tensor(max_relative_position * 2 + 1, num_units))
+ nn.init.xavier_uniform_(self.embeddings_table)
+
+ def forward(self, length_q, length_k):
+ device = self.embeddings_table.device
+ range_vec_q = torch.arange(length_q, device=device)
+ range_vec_k = torch.arange(length_k, device=device)
+ distance_mat = range_vec_k[None, :] - range_vec_q[:, None]
+ distance_mat_clipped = torch.clamp(distance_mat, -self.max_relative_position, self.max_relative_position)
+ final_mat = distance_mat_clipped + self.max_relative_position
+ # final_mat = th.LongTensor(final_mat).to(self.embeddings_table.device)
+ # final_mat = th.tensor(final_mat, device=self.embeddings_table.device, dtype=torch.long)
+ final_mat = final_mat.long()
+ embeddings = self.embeddings_table[final_mat]
+ return embeddings
+
+
+class CrossAttention(nn.Module):
+
+ def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.,
+ relative_position=False, temporal_length=None):
+ super().__init__()
+ inner_dim = dim_head * heads
+ context_dim = default(context_dim, query_dim)
+
+ self.scale = dim_head**-0.5
+ self.heads = heads
+ self.dim_head = dim_head
+ self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
+ self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
+ self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
+
+ self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))
+
+ self.relative_position = relative_position
+ if self.relative_position:
+ assert(temporal_length is not None)
+ self.relative_position_k = RelativePosition(num_units=dim_head, max_relative_position=temporal_length)
+ self.relative_position_v = RelativePosition(num_units=dim_head, max_relative_position=temporal_length)
+ else:
+ ## only used for spatial attention, while NOT for temporal attention
+ if XFORMERS_IS_AVAILBLE and temporal_length is None:
+ self.forward = self.efficient_forward
+
+ def forward(self, x, context=None, mask=None):
+ h = self.heads
+
+ q = self.to_q(x)
+ context = default(context, x)
+ k = self.to_k(context)
+ v = self.to_v(context)
+
+ q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
+ sim = torch.einsum('b i d, b j d -> b i j', q, k) * self.scale
+ if self.relative_position:
+ len_q, len_k, len_v = q.shape[1], k.shape[1], v.shape[1]
+ k2 = self.relative_position_k(len_q, len_k)
+ sim2 = einsum('b t d, t s d -> b t s', q, k2) * self.scale # TODO check
+ sim += sim2
+ del q, k
+
+ if exists(mask):
+ ## feasible for causal attention mask only
+ max_neg_value = -torch.finfo(sim.dtype).max
+ mask = repeat(mask, 'b i j -> (b h) i j', h=h)
+ sim.masked_fill_(~(mask>0.5), max_neg_value)
+
+ # attention, what we cannot get enough of
+ sim = sim.softmax(dim=-1)
+
+ out = torch.einsum('b i j, b j d -> b i d', sim, v)
+ if self.relative_position:
+ v2 = self.relative_position_v(len_q, len_v)
+ out2 = einsum('b t s, t s d -> b t d', sim, v2) # TODO check
+ out += out2
+ out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
+ return self.to_out(out)
+
+ def efficient_forward(self, x, context=None, mask=None):
+ q = self.to_q(x)
+ context = default(context, x)
+ k = self.to_k(context)
+ v = self.to_v(context)
+
+ b, _, _ = q.shape
+ q, k, v = map(
+ lambda t: t.unsqueeze(3)
+ .reshape(b, t.shape[1], self.heads, self.dim_head)
+ .permute(0, 2, 1, 3)
+ .reshape(b * self.heads, t.shape[1], self.dim_head)
+ .contiguous(),
+ (q, k, v),
+ )
+ # actually compute the attention, what we cannot get enough of
+ out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=None)
+
+ if exists(mask):
+ raise NotImplementedError
+ out = (
+ out.unsqueeze(0)
+ .reshape(b, self.heads, out.shape[1], self.dim_head)
+ .permute(0, 2, 1, 3)
+ .reshape(b, out.shape[1], self.heads * self.dim_head)
+ )
+ return self.to_out(out)
+
+
+class BasicTransformerBlock(nn.Module):
+
+ def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True,
+ disable_self_attn=False, attention_cls=None):
+ super().__init__()
+ attn_cls = CrossAttention if attention_cls is None else attention_cls
+ self.disable_self_attn = disable_self_attn
+ self.attn1 = attn_cls(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout,
+ context_dim=context_dim if self.disable_self_attn else None)
+ self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
+ self.attn2 = attn_cls(query_dim=dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, dropout=dropout)
+ self.norm1 = nn.LayerNorm(dim)
+ self.norm2 = nn.LayerNorm(dim)
+ self.norm3 = nn.LayerNorm(dim)
+ self.checkpoint = checkpoint
+
+ def forward(self, x, context=None, mask=None):
+ ## implementation tricks: because checkpointing doesn't support non-tensor (e.g. None or scalar) arguments
+ input_tuple = (x,) ## should not be (x), otherwise *input_tuple will decouple x into multiple arguments
+ if context is not None:
+ input_tuple = (x, context)
+ if mask is not None:
+ forward_mask = partial(self._forward, mask=mask)
+ return checkpoint(forward_mask, (x,), self.parameters(), self.checkpoint)
+
+ # It seems that it will not be executed forever
+ if context is not None and mask is not None:
+ input_tuple = (x, context, mask)
+ return checkpoint(self._forward, input_tuple, self.parameters(), self.checkpoint)
+
+ def _forward(self, x, context=None, mask=None):
+ x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None, mask=mask) + x
+ x = self.attn2(self.norm2(x), context=context, mask=mask) + x
+ x = self.ff(self.norm3(x)) + x
+ return x
+
+
+class SpatialTransformer(nn.Module):
+ """
+ Transformer block for image-like data in spatial axis.
+ First, project the input (aka embedding)
+ and reshape to b, t, d.
+ Then apply standard transformer action.
+ Finally, reshape to image
+ NEW: use_linear for more efficiency instead of the 1x1 convs
+ """
+
+ def __init__(self, in_channels, n_heads, d_head, depth=1, dropout=0., context_dim=None,
+ use_checkpoint=True, disable_self_attn=False, use_linear=False):
+ super().__init__()
+ self.in_channels = in_channels
+ inner_dim = n_heads * d_head
+ self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
+ if not use_linear:
+ self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
+ else:
+ self.proj_in = nn.Linear(in_channels, inner_dim)
+
+ self.transformer_blocks = nn.ModuleList([
+ BasicTransformerBlock(
+ inner_dim,
+ n_heads,
+ d_head,
+ dropout=dropout,
+ context_dim=context_dim,
+ disable_self_attn=disable_self_attn,
+ checkpoint=use_checkpoint) for d in range(depth)
+ ])
+ if not use_linear:
+ self.proj_out = zero_module(nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0))
+ else:
+ self.proj_out = zero_module(nn.Linear(inner_dim, in_channels))
+ self.use_linear = use_linear
+
+
+ def forward(self, x, context=None):
+ b, c, h, w = x.shape
+ x_in = x
+ x = self.norm(x)
+ if not self.use_linear:
+ x = self.proj_in(x)
+ x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
+ if self.use_linear:
+ x = self.proj_in(x)
+ for i, block in enumerate(self.transformer_blocks):
+ x = block(x, context=context)
+ if self.use_linear:
+ x = self.proj_out(x)
+ x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
+ if not self.use_linear:
+ x = self.proj_out(x)
+ return x + x_in
+
+
+class TemporalTransformer(nn.Module):
+ """
+ Transformer block for image-like data in temporal axis.
+ First, reshape to b, t, d.
+ Then apply standard transformer action.
+ Finally, reshape to image
+ """
+ def __init__(self, in_channels, n_heads, d_head, depth=1, dropout=0., context_dim=None,
+ use_checkpoint=True, use_linear=False, only_self_att=True, causal_attention=False,
+ relative_position=False, temporal_length=None, use_image_dataset=False):
+ super().__init__()
+ self.only_self_att = only_self_att
+ self.relative_position = relative_position
+ self.causal_attention = causal_attention
+ self.use_image_dataset = use_image_dataset
+ self.in_channels = in_channels
+ inner_dim = n_heads * d_head
+ self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
+ self.proj_in = nn.Conv1d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
+ if not use_linear:
+ self.proj_in = nn.Conv1d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
+ else:
+ self.proj_in = nn.Linear(in_channels, inner_dim)
+
+ if relative_position:
+ assert(temporal_length is not None)
+ attention_cls = partial(CrossAttention, relative_position=True, temporal_length=temporal_length)
+ else:
+ attention_cls = None
+
+ if self.only_self_att:
+ context_dim = None
+ self.transformer_blocks = nn.ModuleList([
+ BasicTransformerBlock(
+ inner_dim,
+ n_heads,
+ d_head,
+ dropout=dropout,
+ context_dim=context_dim,
+ attention_cls=attention_cls,
+ checkpoint=use_checkpoint) for d in range(depth)
+ ])
+ if not use_linear:
+ self.proj_out = zero_module(nn.Conv1d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0))
+ else:
+ self.proj_out = zero_module(nn.Linear(inner_dim, in_channels))
+ self.use_linear = use_linear
+
+ def forward(self, x, context=None, is_imgbatch=False):
+ b, c, t, h, w = x.shape
+ x_in = x
+ x = self.norm(x)
+ x = rearrange(x, 'b c t h w -> (b h w) c t').contiguous()
+ if not self.use_linear:
+ x = self.proj_in(x)
+ x = rearrange(x, 'bhw c t -> bhw t c').contiguous()
+ if self.use_linear:
+ x = self.proj_in(x)
+
+ temp_mask = None
+ if self.causal_attention:
+ temp_mask = torch.tril(torch.ones([1, t, t]))
+ if is_imgbatch:
+ temp_mask = torch.eye(t).unsqueeze(0)
+ if temp_mask is not None:
+ mask = temp_mask.to(x.device)
+ mask = repeat(mask, 'l i j -> (l bhw) i j', bhw=b*h*w)
+ else:
+ mask = None
+
+ if self.only_self_att:
+ ## note: if no context is given, cross-attention defaults to self-attention
+ for i, block in enumerate(self.transformer_blocks):
+ x = block(x, mask=mask)
+ x = rearrange(x, '(b hw) t c -> b hw t c', b=b).contiguous()
+ else:
+ x = rearrange(x, '(b hw) t c -> b hw t c', b=b).contiguous()
+ context = rearrange(context, '(b t) l con -> b t l con', t=t).contiguous()
+ for i, block in enumerate(self.transformer_blocks):
+ # calculate each batch one by one (since number in shape could not greater then 65,535 for some package)
+ for j in range(b):
+ unit_context = context[j][0:1]
+ context_j = repeat(unit_context, 't l con -> (t r) l con', r=(h * w)).contiguous()
+ ## note: causal mask will not applied in cross-attention case
+ x[j] = block(x[j], context=context_j)
+
+ if self.use_linear:
+ x = self.proj_out(x)
+ x = rearrange(x, 'b (h w) t c -> b c t h w', h=h, w=w).contiguous()
+ if not self.use_linear:
+ x = rearrange(x, 'b hw t c -> (b hw) c t').contiguous()
+ x = self.proj_out(x)
+ x = rearrange(x, '(b h w) c t -> b c t h w', b=b, h=h, w=w).contiguous()
+
+ if self.use_image_dataset:
+ x = 0.0 * x + x_in
+ else:
+ x = x + x_in
+ return x
+
+
+class GEGLU(nn.Module):
+ def __init__(self, dim_in, dim_out):
+ super().__init__()
+ self.proj = nn.Linear(dim_in, dim_out * 2)
+
+ def forward(self, x):
+ x, gate = self.proj(x).chunk(2, dim=-1)
+ return x * F.gelu(gate)
+
+
+class FeedForward(nn.Module):
+ def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
+ super().__init__()
+ inner_dim = int(dim * mult)
+ dim_out = default(dim_out, dim)
+ project_in = nn.Sequential(
+ nn.Linear(dim, inner_dim),
+ nn.GELU()
+ ) if not glu else GEGLU(dim, inner_dim)
+
+ self.net = nn.Sequential(
+ project_in,
+ nn.Dropout(dropout),
+ nn.Linear(inner_dim, dim_out)
+ )
+
+ def forward(self, x):
+ return self.net(x)
+
+
+class LinearAttention(nn.Module):
+ def __init__(self, dim, heads=4, dim_head=32):
+ super().__init__()
+ self.heads = heads
+ hidden_dim = dim_head * heads
+ self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False)
+ self.to_out = nn.Conv2d(hidden_dim, dim, 1)
+
+ def forward(self, x):
+ b, c, h, w = x.shape
+ qkv = self.to_qkv(x)
+ q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3)
+ k = k.softmax(dim=-1)
+ context = torch.einsum('bhdn,bhen->bhde', k, v)
+ out = torch.einsum('bhde,bhdn->bhen', context, q)
+ out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w)
+ return self.to_out(out)
+
+
+class SpatialSelfAttention(nn.Module):
+ def __init__(self, in_channels):
+ super().__init__()
+ self.in_channels = in_channels
+
+ self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
+ self.q = torch.nn.Conv2d(in_channels,
+ in_channels,
+ kernel_size=1,
+ stride=1,
+ padding=0)
+ self.k = torch.nn.Conv2d(in_channels,
+ in_channels,
+ kernel_size=1,
+ stride=1,
+ padding=0)
+ self.v = torch.nn.Conv2d(in_channels,
+ in_channels,
+ kernel_size=1,
+ stride=1,
+ padding=0)
+ self.proj_out = torch.nn.Conv2d(in_channels,
+ in_channels,
+ kernel_size=1,
+ stride=1,
+ padding=0)
+
+ def forward(self, x):
+ h_ = x
+ h_ = self.norm(h_)
+ q = self.q(h_)
+ k = self.k(h_)
+ v = self.v(h_)
+
+ # compute attention
+ b,c,h,w = q.shape
+ q = rearrange(q, 'b c h w -> b (h w) c')
+ k = rearrange(k, 'b c h w -> b c (h w)')
+ w_ = torch.einsum('bij,bjk->bik', q, k)
+
+ w_ = w_ * (int(c)**(-0.5))
+ w_ = torch.nn.functional.softmax(w_, dim=2)
+
+ # attend to values
+ v = rearrange(v, 'b c h w -> b c (h w)')
+ w_ = rearrange(w_, 'b i j -> b j i')
+ h_ = torch.einsum('bij,bjk->bik', v, w_)
+ h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h)
+ h_ = self.proj_out(h_)
+
+ return x+h_
diff --git a/lvdm/modules/attention_temporal.py b/lvdm/modules/attention_temporal.py
new file mode 100644
index 0000000000000000000000000000000000000000..7cee2e83f8750d6b3a217c350199657e9de2fa1b
--- /dev/null
+++ b/lvdm/modules/attention_temporal.py
@@ -0,0 +1,995 @@
+import math
+from inspect import isfunction
+
+import torch
+import torch as th
+from torch import nn, einsum
+import torch.nn.functional as F
+from einops import rearrange, repeat
+try:
+ import xformers
+ import xformers.ops
+ XFORMERS_IS_AVAILBLE = True
+except:
+ XFORMERS_IS_AVAILBLE = False
+
+from lvdm.common import (
+ checkpoint,
+ exists,
+ uniq,
+ default,
+ max_neg_value,
+ init_
+)
+from lvdm.basics import (
+ conv_nd,
+ zero_module,
+ normalization
+)
+
+
+class GEGLU(nn.Module):
+ def __init__(self, dim_in, dim_out):
+ super().__init__()
+ self.proj = nn.Linear(dim_in, dim_out * 2)
+
+ def forward(self, x):
+ x, gate = self.proj(x).chunk(2, dim=-1)
+ return x * F.gelu(gate)
+
+
+class FeedForward(nn.Module):
+ def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
+ super().__init__()
+ inner_dim = int(dim * mult)
+ dim_out = default(dim_out, dim)
+ project_in = nn.Sequential(
+ nn.Linear(dim, inner_dim),
+ nn.GELU()
+ ) if not glu else GEGLU(dim, inner_dim)
+
+ self.net = nn.Sequential(
+ project_in,
+ nn.Dropout(dropout),
+ nn.Linear(inner_dim, dim_out)
+ )
+
+ def forward(self, x):
+ return self.net(x)
+
+
+def Normalize(in_channels):
+ return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
+
+
+# ---------------------------------------------------------------------------------------------------
+class RelativePosition(nn.Module):
+ """ https://github.com/evelinehong/Transformer_Relative_Position_PyTorch/blob/master/relative_position.py """
+
+ def __init__(self, num_units, max_relative_position):
+ super().__init__()
+ self.num_units = num_units
+ self.max_relative_position = max_relative_position
+ self.embeddings_table = nn.Parameter(th.Tensor(max_relative_position * 2 + 1, num_units))
+ nn.init.xavier_uniform_(self.embeddings_table)
+
+ def forward(self, length_q, length_k):
+ device = self.embeddings_table.device
+ range_vec_q = th.arange(length_q, device=device)
+ range_vec_k = th.arange(length_k, device=device)
+ distance_mat = range_vec_k[None, :] - range_vec_q[:, None]
+ distance_mat_clipped = th.clamp(distance_mat, -self.max_relative_position, self.max_relative_position)
+ final_mat = distance_mat_clipped + self.max_relative_position
+ # final_mat = th.LongTensor(final_mat).to(self.embeddings_table.device)
+ # final_mat = th.tensor(final_mat, device=self.embeddings_table.device, dtype=torch.long)
+ final_mat = final_mat.long()
+ embeddings = self.embeddings_table[final_mat]
+ return embeddings
+
+
+class TemporalCrossAttention(nn.Module):
+ def __init__(self,
+ query_dim,
+ context_dim=None,
+ heads=8,
+ dim_head=64,
+ dropout=0.,
+ temporal_length=None, # For relative positional representation and image-video joint training.
+ image_length=None, # For image-video joint training.
+ use_relative_position=False, # whether use relative positional representation in temporal attention.
+ img_video_joint_train=False, # For image-video joint training.
+ use_tempoal_causal_attn=False,
+ bidirectional_causal_attn=False,
+ tempoal_attn_type=None,
+ joint_train_mode="same_batch",
+ **kwargs,
+ ):
+ super().__init__()
+ inner_dim = dim_head * heads
+ context_dim = default(context_dim, query_dim)
+ self.context_dim = context_dim
+
+ self.scale = dim_head ** -0.5
+ self.heads = heads
+ self.temporal_length = temporal_length
+ self.use_relative_position = use_relative_position
+ self.img_video_joint_train = img_video_joint_train
+ self.bidirectional_causal_attn = bidirectional_causal_attn
+ self.joint_train_mode = joint_train_mode
+ assert(joint_train_mode in ["same_batch", "diff_batch"])
+ self.tempoal_attn_type = tempoal_attn_type
+
+ if bidirectional_causal_attn:
+ assert use_tempoal_causal_attn
+ if tempoal_attn_type:
+ assert(tempoal_attn_type in ['sparse_causal', 'sparse_causal_first'])
+ assert(not use_tempoal_causal_attn)
+ assert(not (img_video_joint_train and (self.joint_train_mode == "same_batch")))
+ self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
+ self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
+ self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
+
+ assert(not (img_video_joint_train and (self.joint_train_mode == "same_batch") and use_tempoal_causal_attn))
+ if img_video_joint_train:
+ if self.joint_train_mode == "same_batch":
+ mask = torch.ones([1, temporal_length+image_length, temporal_length+image_length])
+ # mask[:, image_length:, :] = 0
+ # mask[:, :, image_length:] = 0
+ mask[:, temporal_length:, :] = 0
+ mask[:, :, temporal_length:] = 0
+ self.mask = mask
+ else:
+ self.mask = None
+ elif use_tempoal_causal_attn:
+ # normal causal attn
+ self.mask = torch.tril(torch.ones([1, temporal_length, temporal_length]))
+ elif tempoal_attn_type == 'sparse_causal':
+ # all frames interact with only the `prev` & self frame
+ mask1 = torch.tril(torch.ones([1, temporal_length, temporal_length])).bool() # true indicates keeping
+ mask2 = torch.zeros([1, temporal_length, temporal_length]) # initialize to same shape with mask1
+ mask2[:,2:temporal_length, :temporal_length-2] = torch.tril(torch.ones([1,temporal_length-2, temporal_length-2]))
+ mask2=(1-mask2).bool() # false indicates masking
+ self.mask = mask1 & mask2
+ elif tempoal_attn_type == 'sparse_causal_first':
+ # all frames interact with only the `first` & self frame
+ mask1 = torch.tril(torch.ones([1, temporal_length, temporal_length])).bool() # true indicates keeping
+ mask2 = torch.zeros([1, temporal_length, temporal_length])
+ mask2[:,2:temporal_length, 1:temporal_length-1] = torch.tril(torch.ones([1,temporal_length-2, temporal_length-2]))
+ mask2=(1-mask2).bool() # false indicates masking
+ self.mask = mask1 & mask2
+ else:
+ self.mask = None
+
+ if use_relative_position:
+ assert(temporal_length is not None)
+ self.relative_position_k = RelativePosition(num_units=dim_head, max_relative_position=temporal_length)
+ self.relative_position_v = RelativePosition(num_units=dim_head, max_relative_position=temporal_length)
+
+ self.to_out = nn.Sequential(
+ nn.Linear(inner_dim, query_dim),
+ nn.Dropout(dropout)
+ )
+
+ nn.init.constant_(self.to_q.weight, 0)
+ nn.init.constant_(self.to_k.weight, 0)
+ nn.init.constant_(self.to_v.weight, 0)
+ nn.init.constant_(self.to_out[0].weight, 0)
+ nn.init.constant_(self.to_out[0].bias, 0)
+
+ def forward(self, x, context=None, mask=None):
+ # if context is None:
+ # print(f'[Temp Attn] x={x.shape},context=None')
+ # else:
+ # print(f'[Temp Attn] x={x.shape},context={context.shape}')
+
+ nh = self.heads
+ out = x
+ q = self.to_q(out)
+ # if context is not None:
+ # print(f'temporal context 1 ={context.shape}')
+ # print(f'x={x.shape}')
+ context = default(context, x)
+ # print(f'temporal context 2 ={context.shape}')
+ k = self.to_k(context)
+ v = self.to_v(context)
+ # print(f'q ={q.shape},k={k.shape}')
+
+ q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=nh), (q, k, v))
+ sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
+
+ if self.use_relative_position:
+ len_q, len_k, len_v = q.shape[1], k.shape[1], v.shape[1]
+ k2 = self.relative_position_k(len_q, len_k)
+ sim2 = einsum('b t d, t s d -> b t s', q, k2) * self.scale # TODO check
+ sim += sim2
+ # print('mask',mask)
+ if exists(self.mask):
+ if mask is None:
+ mask = self.mask.to(sim.device)
+ else:
+ mask = self.mask.to(sim.device).bool() & mask #.to(sim.device)
+ else:
+ mask = mask
+ # if self.img_video_joint_train:
+ # # process mask (make mask same shape with sim)
+ # c, h, w = mask.shape
+ # c, t, s = sim.shape
+ # # assert(h == w and t == s),f"mask={mask.shape}, sim={sim.shape}, h={h}, w={w}, t={t}, s={s}"
+
+ # if h > t:
+ # mask = mask[:, :t, :]
+ # elif h < t: # pad zeros to mask (no attention) only initial mask =1 area compute weights
+ # mask_ = torch.zeros([c,t,w]).to(mask.device)
+ # mask_[:, :h, :] = mask
+ # mask = mask_
+ # c, h, w = mask.shape
+ # if w > s:
+ # mask = mask[:, :, :s]
+ # elif w < s: # pad zeros to mask
+ # mask_ = torch.zeros([c,h,s]).to(mask.device)
+ # mask_[:, :, :w] = mask
+ # mask = mask_
+
+ # max_neg_value = -torch.finfo(sim.dtype).max
+ # sim = sim.float().masked_fill(mask == 0, max_neg_value)
+ if mask is not None:
+ max_neg_value = -1e9
+ sim = sim + (1-mask.float()) * max_neg_value # 1=masking,0=no masking
+ # print('sim after masking: ', sim)
+
+ # if torch.isnan(sim).any() or torch.isinf(sim).any() or (not sim.any()):
+ # print(f'sim [after masking], isnan={torch.isnan(sim).any()}, isinf={torch.isinf(sim).any()}, allzero={not sim.any()}')
+
+ attn = sim.softmax(dim=-1)
+ # print('attn after softmax: ', attn)
+ # if torch.isnan(attn).any() or torch.isinf(attn).any() or (not attn.any()):
+ # print(f'attn [after softmax], isnan={torch.isnan(attn).any()}, isinf={torch.isinf(attn).any()}, allzero={not attn.any()}')
+
+ # attn = torch.where(torch.isnan(attn), torch.full_like(attn,0), attn)
+ # if torch.isinf(attn.detach()).any():
+ # import pdb;pdb.set_trace()
+ # if torch.isnan(attn.detach()).any():
+ # import pdb;pdb.set_trace()
+ out = einsum('b i j, b j d -> b i d', attn, v)
+
+ if self.bidirectional_causal_attn:
+ mask_reverse = torch.triu(torch.ones([1, self.temporal_length, self.temporal_length], device=sim.device))
+ sim_reverse = sim.float().masked_fill(mask_reverse == 0, max_neg_value)
+ attn_reverse = sim_reverse.softmax(dim=-1)
+ out_reverse = einsum('b i j, b j d -> b i d', attn_reverse, v)
+ out += out_reverse
+
+ if self.use_relative_position:
+ v2 = self.relative_position_v(len_q, len_v)
+ out2 = einsum('b t s, t s d -> b t d', attn, v2) # TODO check
+ out += out2 # TODO check:先add还是先merge head?先计算rpr,on split head之后的数据,然后再merge。
+ out = rearrange(out, '(b h) n d -> b n (h d)', h=nh) # merge head
+ return self.to_out(out)
+
+
+class CrossAttention(nn.Module):
+ def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.,
+ sa_shared_kv=False, shared_type='only_first', **kwargs,):
+ super().__init__()
+ inner_dim = dim_head * heads
+ context_dim = default(context_dim, query_dim)
+ self.sa_shared_kv = sa_shared_kv
+ assert(shared_type in ['only_first', 'all_frames', 'first_and_prev', 'only_prev', 'full', 'causal', 'full_qkv'])
+ self.shared_type = shared_type
+
+ self.dim_head = dim_head
+ self.scale = dim_head ** -0.5
+ self.heads = heads
+
+ self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
+ self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
+ self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
+
+ self.to_out = nn.Sequential(
+ nn.Linear(inner_dim, query_dim),
+ nn.Dropout(dropout)
+ )
+ if XFORMERS_IS_AVAILBLE:
+ self.forward = self.efficient_forward
+
+ def forward(self, x, context=None, mask=None):
+ h = self.heads
+ b = x.shape[0]
+
+ q = self.to_q(x)
+ context = default(context, x)
+ k = self.to_k(context)
+ v = self.to_v(context)
+ if self.sa_shared_kv:
+ if self.shared_type == 'only_first':
+ k,v = map(lambda xx: rearrange(xx[0].unsqueeze(0), 'b n c -> (b n) c').unsqueeze(0).repeat(b,1,1),
+ (k,v))
+ else:
+ raise NotImplementedError
+
+ q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
+
+ sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
+
+ if exists(mask):
+ mask = rearrange(mask, 'b ... -> b (...)')
+ max_neg_value = -torch.finfo(sim.dtype).max
+ mask = repeat(mask, 'b j -> (b h) () j', h=h)
+ sim.masked_fill_(~mask, max_neg_value)
+
+ # attention, what we cannot get enough of
+ attn = sim.softmax(dim=-1)
+
+ out = einsum('b i j, b j d -> b i d', attn, v)
+ out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
+ return self.to_out(out)
+
+ def efficient_forward(self, x, context=None, mask=None):
+ q = self.to_q(x)
+ context = default(context, x)
+ k = self.to_k(context)
+ v = self.to_v(context)
+
+ b, _, _ = q.shape
+ q, k, v = map(
+ lambda t: t.unsqueeze(3)
+ .reshape(b, t.shape[1], self.heads, self.dim_head)
+ .permute(0, 2, 1, 3)
+ .reshape(b * self.heads, t.shape[1], self.dim_head)
+ .contiguous(),
+ (q, k, v),
+ )
+ # actually compute the attention, what we cannot get enough of
+ out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=None)
+
+ if exists(mask):
+ raise NotImplementedError
+ out = (
+ out.unsqueeze(0)
+ .reshape(b, self.heads, out.shape[1], self.dim_head)
+ .permute(0, 2, 1, 3)
+ .reshape(b, out.shape[1], self.heads * self.dim_head)
+ )
+ return self.to_out(out)
+
+class VideoSpatialCrossAttention(CrossAttention):
+ def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0):
+ super().__init__(query_dim, context_dim, heads, dim_head, dropout)
+ def forward(self, x, context=None, mask=None):
+ b, c, t, h, w = x.shape
+ if context is not None:
+ context = context.repeat(t, 1, 1)
+ x = super.forward(spatial_attn_reshape(x), context=context) + x
+ return spatial_attn_reshape_back(x,b,h)
+
+class BasicTransformerBlockST(nn.Module):
+ def __init__(self,
+ # Spatial Stuff
+ dim,
+ n_heads,
+ d_head,
+ dropout=0.,
+ context_dim=None,
+ gated_ff=True,
+ checkpoint=True,
+ # Temporal Stuff
+ temporal_length=None,
+ image_length=None,
+ use_relative_position=True,
+ img_video_joint_train=False,
+ cross_attn_on_tempoal=False,
+ temporal_crossattn_type="selfattn",
+ order="stst",
+ temporalcrossfirst=False,
+ temporal_context_dim=None,
+ split_stcontext=False,
+ local_spatial_temporal_attn=False,
+ window_size=2,
+ **kwargs,
+ ):
+ super().__init__()
+ # Self attention
+ self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout, **kwargs,)
+ self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
+ # cross attention if context is not None
+ self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim,
+ heads=n_heads, dim_head=d_head, dropout=dropout, **kwargs,)
+ self.norm1 = nn.LayerNorm(dim)
+ self.norm2 = nn.LayerNorm(dim)
+ self.norm3 = nn.LayerNorm(dim)
+ self.checkpoint = checkpoint
+ self.order = order
+ assert(self.order in ["stst", "sstt", "st_parallel"])
+ self.temporalcrossfirst = temporalcrossfirst
+ self.split_stcontext = split_stcontext
+ self.local_spatial_temporal_attn = local_spatial_temporal_attn
+ if self.local_spatial_temporal_attn:
+ assert(self.order == 'stst')
+ assert(self.order == 'stst')
+ self.window_size = window_size
+ if not split_stcontext:
+ temporal_context_dim = context_dim
+ # Temporal attention
+ assert(temporal_crossattn_type in ["selfattn", "crossattn", "skip"])
+ self.temporal_crossattn_type = temporal_crossattn_type
+ self.attn1_tmp = TemporalCrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout,
+ temporal_length=temporal_length,
+ image_length=image_length,
+ use_relative_position=use_relative_position,
+ img_video_joint_train=img_video_joint_train,
+ **kwargs,
+ )
+ self.attn2_tmp = TemporalCrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout,
+ # cross attn
+ context_dim=temporal_context_dim if temporal_crossattn_type == "crossattn" else None,
+ # temporal attn
+ temporal_length=temporal_length,
+ image_length=image_length,
+ use_relative_position=use_relative_position,
+ img_video_joint_train=img_video_joint_train,
+ **kwargs,
+ )
+ self.norm4 = nn.LayerNorm(dim)
+ self.norm5 = nn.LayerNorm(dim)
+ # self.norm1_tmp = nn.LayerNorm(dim)
+ # self.norm2_tmp = nn.LayerNorm(dim)
+
+ ##############################################################################################################################################
+ def forward(self, x, context=None, temporal_context=None, no_temporal_attn=None, attn_mask=None, **kwargs):
+ # print(f'no_temporal_attn={no_temporal_attn}')
+
+ if not self.split_stcontext:
+ # st cross attention use the same context vector
+ temporal_context = context.detach().clone()
+
+ if context is None and temporal_context is None:
+ # self-attention models
+ if no_temporal_attn:
+ raise NotImplementedError
+ return checkpoint(self._forward_nocontext, (x), self.parameters(), self.checkpoint)
+ else:
+ # cross-attention models
+ if no_temporal_attn:
+ forward_func = self._forward_no_temporal_attn
+ else:
+ forward_func = self._forward
+ inputs = (x, context, temporal_context) if temporal_context is not None else (x, context)
+ return checkpoint(forward_func, inputs, self.parameters(), self.checkpoint)
+ # if attn_mask is not None:
+ # return checkpoint(self._forward, (x, context, temporal_context, attn_mask), self.parameters(), self.checkpoint)
+ # return checkpoint(self._forward, (x, context, temporal_context), self.parameters(), self.checkpoint)
+
+ def _forward(self, x, context=None, temporal_context=None, mask=None, no_temporal_attn=None, ):
+ assert(x.dim() == 5), f"x shape = {x.shape}"
+ b, c, t, h, w = x.shape
+
+ if self.order in ["stst", "sstt"]:
+ x = self._st_cross_attn(x, context, temporal_context=temporal_context, order=self.order, mask=mask,)#no_temporal_attn=no_temporal_attn,
+ elif self.order == "st_parallel":
+ x = self._st_cross_attn_parallel(x, context, temporal_context=temporal_context, order=self.order,)#no_temporal_attn=no_temporal_attn,
+ else:
+ raise NotImplementedError
+
+ x = self.ff(self.norm3(x)) + x
+ if (no_temporal_attn is None) or (not no_temporal_attn):
+ x = rearrange(x, '(b h w) t c -> b c t h w', b=b,h=h,w=w) # 3d -> 5d
+ elif no_temporal_attn:
+ x = rearrange(x, '(b t) (h w) c -> b c t h w', b=b,h=h,w=w) # 3d -> 5d
+ return x
+
+ def _forward_no_temporal_attn(self, x, context=None, temporal_context=None, ):
+ # temporary implementation :(
+ # because checkpoint does not support non-tensor inputs currently.
+ assert(x.dim() == 5), f"x shape = {x.shape}"
+ b, c, t, h, w = x.shape
+
+ if self.order in ["stst", "sstt"]:
+ # x = self._st_cross_attn(x, context, temporal_context=temporal_context, order=self.order, no_temporal_attn=True,)
+ # mask = torch.zeros([1, t, t], device=x.device).bool() if context is None else torch.zeros([1, context.shape[1], t], device=x.device).bool()
+ mask = torch.zeros([1, t, t], device=x.device).bool()
+ x = self._st_cross_attn(x, context, temporal_context=temporal_context, order=self.order, mask=mask,)
+ elif self.order == "st_parallel":
+ x = self._st_cross_attn_parallel(x, context, temporal_context=temporal_context, order=self.order, no_temporal_attn=True,)
+ else:
+ raise NotImplementedError
+
+ x = self.ff(self.norm3(x)) + x
+ x = rearrange(x, '(b h w) t c -> b c t h w', b=b,h=h,w=w) # 3d -> 5d
+ # x = rearrange(x, '(b t) (h w) c -> b c t h w', b=b,h=h,w=w) # 3d -> 5d
+ return x
+
+ def _forward_nocontext(self, x, no_temporal_attn=None):
+ assert(x.dim() == 5), f"x shape = {x.shape}"
+ b, c, t, h, w = x.shape
+
+ if self.order in ["stst", "sstt"]:
+ x = self._st_cross_attn(x, order=self.order, no_temporal_attn=no_temporal_attn)
+ elif self.order == "st_parallel":
+ x = self._st_cross_attn_parallel(x, order=self.order, no_temporal_attn=no_temporal_attn)
+ else:
+ raise NotImplementedError
+
+ x = self.ff(self.norm3(x)) + x
+ x = rearrange(x, '(b h w) t c -> b c t h w', b=b,h=h,w=w) # 3d -> 5d
+
+ return x
+ ##############################################################################################################################################
+
+ def _st_cross_attn(self, x, context=None, temporal_context=None, order="stst", mask=None): #no_temporal_attn=None,
+ b, c, t, h, w = x.shape
+ # print(f'[_st_cross_attn input] x={x.shape}, context={context.shape}')
+
+ if order == "stst":
+ # spatial self attention
+ x = rearrange(x, 'b c t h w -> (b t) (h w) c')
+ x = self.attn1(self.norm1(x)) + x
+ x = rearrange(x, '(b t) (h w) c -> b c t h w', b=b,h=h)
+
+ # temporal self attention
+ # if (no_temporal_attn is None) or (not no_temporal_attn):
+ if self.local_spatial_temporal_attn:
+ x = local_spatial_temporal_attn_reshape(x,window_size=self.window_size)
+ else:
+ x = rearrange(x, 'b c t h w -> (b h w) t c')
+ x = self.attn1_tmp(self.norm4(x), mask=mask) + x
+
+ if self.local_spatial_temporal_attn:
+ x = local_spatial_temporal_attn_reshape_back(x, window_size=self.window_size,
+ b=b, h=h, w=w, t=t)
+ else:
+ x = rearrange(x, '(b h w) t c -> b c t h w', b=b,h=h,w=w) # 3d -> 5d
+
+ # spatial cross attention
+ x = rearrange(x, 'b c t h w -> (b t) (h w) c')
+ # context_ = context.repeat(t, 1, 1) if context is not None else None
+ # print(f'[before spatial cross] context={context.shape}')
+ if context is not None:
+ if context.shape[0] == t: # img captions no_temporal_attn or
+ context_ = context
+ else:
+ context_ = []
+ for i in range(context.shape[0]):
+ context_.append(context[i].unsqueeze(0).repeat(t, 1, 1))
+ context_ = torch.cat(context_,dim=0)
+ else:
+ context_ = None
+ # print(f'[before spatial cross] x={x.shape}, context_={context_.shape}')
+ x = self.attn2(self.norm2(x), context=context_) + x
+
+ # temporal cross attention
+ # if (no_temporal_attn is None) or (not no_temporal_attn):
+ x = rearrange(x, '(b t) (h w) c -> b c t h w', b=b,h=h)
+ x = rearrange(x, 'b c t h w -> (b h w) t c')
+ if self.temporal_crossattn_type == "crossattn":
+ # tmporal cross attention
+ if temporal_context is not None:
+ # print(f'STATTN context={context.shape}, temporal_context={temporal_context.shape}')
+ temporal_context = torch.cat([context, temporal_context], dim=1) # blc
+ # print(f'STATTN after concat temporal_context={temporal_context.shape}')
+ temporal_context = temporal_context.repeat(h*w, 1,1)
+ # print(f'after repeat temporal_context={temporal_context.shape}')
+ else:
+ temporal_context = context[0:1,...].repeat(h*w, 1, 1)
+ # print(f'STATTN after concat x={x.shape}')
+ x = self.attn2_tmp(self.norm5(x), context=temporal_context, mask=mask) + x
+ elif self.temporal_crossattn_type == "selfattn":
+ # temporal self attention
+ x = self.attn2_tmp(self.norm5(x), context=None, mask=mask) + x
+ elif self.temporal_crossattn_type == "skip":
+ # no temporal cross and self attention
+ pass
+ else:
+ raise NotImplementedError
+
+ elif order == "sstt":
+ # spatial self attention
+ x = rearrange(x, 'b c t h w -> (b t) (h w) c')
+ x = self.attn1(self.norm1(x)) + x
+
+ # spatial cross attention
+ context_ = context.repeat(t, 1, 1) if context is not None else None
+ x = self.attn2(self.norm2(x), context=context_) + x
+ x = rearrange(x, '(b t) (h w) c -> b c t h w', b=b,h=h)
+
+ if (no_temporal_attn is None) or (not no_temporal_attn):
+ if self.temporalcrossfirst:
+ # temporal cross attention
+ if self.temporal_crossattn_type == "crossattn":
+ # if temporal_context is not None:
+ temporal_context = context.repeat(h*w, 1, 1)
+ x = self.attn2_tmp(self.norm5(x), context=temporal_context, mask=mask) + x
+ elif self.temporal_crossattn_type == "selfattn":
+ x = self.attn2_tmp(self.norm5(x), context=None, mask=mask) + x
+ elif self.temporal_crossattn_type == "skip":
+ pass
+ else:
+ raise NotImplementedError
+ # temporal self attention
+ x = rearrange(x, 'b c t h w -> (b h w) t c')
+ x = self.attn1_tmp(self.norm4(x), mask=mask) + x
+ else:
+ # temporal self attention
+ x = rearrange(x, 'b c t h w -> (b h w) t c')
+ x = self.attn1_tmp(self.norm4(x), mask=mask) + x
+ # temporal cross attention
+ if self.temporal_crossattn_type == "crossattn":
+ if temporal_context is not None:
+ temporal_context = context.repeat(h*w, 1, 1)
+ x = self.attn2_tmp(self.norm5(x), context=temporal_context, mask=mask) + x
+ elif self.temporal_crossattn_type == "selfattn":
+ x = self.attn2_tmp(self.norm5(x), context=None, mask=mask) + x
+ elif self.temporal_crossattn_type == "skip":
+ pass
+ else:
+ raise NotImplementedError
+ else:
+ raise NotImplementedError
+
+ return x
+
+ def _st_cross_attn_parallel(self, x, context=None, temporal_context=None, order="sst", no_temporal_attn=None):
+ """ order: x -> Self Attn -> Cross Attn -> attn_s
+ x -> Temp Self Attn -> attn_t
+ x' = x + attn_s + attn_t
+ """
+ if no_temporal_attn is not None:
+ raise NotImplementedError
+
+ B, C, T, H, W = x.shape
+ # spatial self attention
+ h = x
+ h = rearrange(h, 'b c t h w -> (b t) (h w) c')
+ h = self.attn1(self.norm1(h)) + h
+ # spatial cross
+ # context_ = context.repeat(T, 1, 1) if context is not None else None
+ if context is not None:
+ context_ = []
+ for i in range(context.shape[0]):
+ context_.append(context[i].unsqueeze(0).repeat(T, 1, 1))
+ context_ = torch.cat(context_,dim=0)
+ else:
+ context_ = None
+
+ h = self.attn2(self.norm2(h), context=context_) + h
+ h = rearrange(h, '(b t) (h w) c -> b c t h w', b=B, h=H)
+
+ # temporal self
+ h2 = x
+ h2 = rearrange(h2, 'b c t h w -> (b h w) t c')
+ h2 = self.attn1_tmp(self.norm4(h2))# + h2
+ h2 = rearrange(h2, '(b h w) t c -> b c t h w', b=B, h=H, w=W)
+ out = h + h2
+ return rearrange(out, 'b c t h w -> (b h w) t c')
+
+ ##############################################################################################################################################
+
+def spatial_attn_reshape(x):
+ return rearrange(x, 'b c t h w -> (b t) (h w) c')
+def spatial_attn_reshape_back(x,b,h):
+ return rearrange(x, '(b t) (h w) c -> b c t h w', b=b,h=h)
+def temporal_attn_reshape(x):
+ return rearrange(x, 'b c t h w -> (b h w) t c')
+def temporal_attn_reshape_back(x, b,h,w):
+ return rearrange(x, '(b h w) t c -> b c t h w', b=b, h=h, w=w)
+def local_spatial_temporal_attn_reshape(x, window_size):
+ B, C, T, H, W = x.shape
+ NH = H // window_size
+ NW = W // window_size
+ # x = x.view(B, C, T, NH, window_size, NW, window_size)
+ # tokens = x.permute(0, 1, 2, 3, 5, 4, 6).contiguous()
+ # tokens = tokens.view(-1, window_size, window_size, C)
+ x = rearrange(x, 'b c t (nh wh) (nw ww) -> b c t nh wh nw ww', nh=NH, nw=NW, wh=window_size, ww=window_size).contiguous() # # B, C, T, NH, NW, window_size, window_size
+ x = rearrange(x, 'b c t nh wh nw ww -> (b nh nw) (t wh ww) c') # (B, NH, NW) (T, window_size, window_size) C
+ return x
+def local_spatial_temporal_attn_reshape_back(x, window_size, b, h, w, t):
+ B, L, C = x.shape
+ NH = h // window_size
+ NW = w // window_size
+ x = rearrange(x, '(b nh nw) (t wh ww) c -> b c t nh wh nw ww', b=b, nh=NH, nw=NW, t=t, wh=window_size, ww=window_size)
+ x = rearrange(x, 'b c t nh wh nw ww -> b c t (nh wh) (nw ww)')
+ return x
+
+
+class SpatialTemporalTransformer(nn.Module):
+ """
+ Transformer block for video-like data (5D tensor).
+ First, project the input (aka embedding) with NO reshape.
+ Then apply standard transformer action.
+ The 5D -> 3D reshape operation will be done in the specific attention module.
+ """
+ def __init__(
+ self,
+ in_channels, n_heads, d_head,
+ depth=1, dropout=0.,
+ context_dim=None,
+ # Temporal stuff
+ temporal_length=None,
+ image_length=None,
+ use_relative_position=True,
+ img_video_joint_train=False,
+ cross_attn_on_tempoal=False,
+ temporal_crossattn_type=False,
+ order="stst",
+ temporalcrossfirst=False,
+ split_stcontext=False,
+ temporal_context_dim=None,
+ **kwargs,
+ ):
+ super().__init__()
+
+ self.in_channels = in_channels
+ inner_dim = n_heads * d_head
+
+ self.norm = Normalize(in_channels)
+ self.proj_in = nn.Conv3d(in_channels,
+ inner_dim,
+ kernel_size=1,
+ stride=1,
+ padding=0)
+
+ self.transformer_blocks = nn.ModuleList(
+ [BasicTransformerBlockST(
+ inner_dim, n_heads, d_head, dropout=dropout,
+ # cross attn
+ context_dim=context_dim,
+ # temporal attn
+ temporal_length=temporal_length,
+ image_length=image_length,
+ use_relative_position=use_relative_position,
+ img_video_joint_train=img_video_joint_train,
+ temporal_crossattn_type=temporal_crossattn_type,
+ order=order,
+ temporalcrossfirst=temporalcrossfirst,
+ split_stcontext=split_stcontext,
+ temporal_context_dim=temporal_context_dim,
+ **kwargs
+ ) for d in range(depth)]
+ )
+
+ self.proj_out = zero_module(nn.Conv3d(inner_dim,
+ in_channels,
+ kernel_size=1,
+ stride=1,
+ padding=0))
+
+ def forward(self, x, context=None, temporal_context=None, **kwargs):
+ # note: if no context is given, cross-attention defaults to self-attention
+ assert(x.dim() == 5), f"x shape = {x.shape}"
+ b, c, t, h, w = x.shape
+ x_in = x
+
+ x = self.norm(x)
+ x = self.proj_in(x)
+
+ for block in self.transformer_blocks:
+ x = block(x, context=context, temporal_context=temporal_context, **kwargs)
+
+ x = self.proj_out(x)
+ return x + x_in
+
+# ---------------------------------------------------------------------------------------------------
+
+class STAttentionBlock2(nn.Module):
+ def __init__(
+ self,
+ channels,
+ num_heads=1,
+ num_head_channels=-1,
+ use_checkpoint=False, # not used, only used in ResBlock
+ use_new_attention_order=False, # QKVAttention or QKVAttentionLegacy
+ temporal_length=16, # used in relative positional representation.
+ image_length=8, # used for image-video joint training.
+ use_relative_position=False, # whether use relative positional representation in temporal attention.
+ img_video_joint_train=False,
+ # norm_type="groupnorm",
+ attn_norm_type="group",
+ use_tempoal_causal_attn=False,
+ ):
+ """
+ version 1: guided_diffusion implemented version
+ version 2: remove args input argument
+ """
+ super().__init__()
+
+ if num_head_channels == -1:
+ self.num_heads = num_heads
+ else:
+ assert (
+ channels % num_head_channels == 0
+ ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
+ self.num_heads = channels // num_head_channels
+ self.use_checkpoint = use_checkpoint
+
+ self.temporal_length = temporal_length
+ self.image_length = image_length
+ self.use_relative_position = use_relative_position
+ self.img_video_joint_train = img_video_joint_train
+ self.attn_norm_type = attn_norm_type
+ assert(self.attn_norm_type in ["group", "no_norm"])
+ self.use_tempoal_causal_attn = use_tempoal_causal_attn
+
+ if self.attn_norm_type == "group":
+ self.norm_s = normalization(channels)
+ self.norm_t = normalization(channels)
+
+ self.qkv_s = conv_nd(1, channels, channels * 3, 1)
+ self.qkv_t = conv_nd(1, channels, channels * 3, 1)
+
+ if self.img_video_joint_train:
+ mask = th.ones([1, temporal_length+image_length, temporal_length+image_length])
+ mask[:, temporal_length:, :] = 0
+ mask[:, :, temporal_length:] = 0
+ self.register_buffer("mask", mask)
+ else:
+ self.mask = None
+
+ if use_new_attention_order:
+ # split qkv before split heads
+ self.attention_s = QKVAttention(self.num_heads)
+ self.attention_t = QKVAttention(self.num_heads)
+ else:
+ # split heads before split qkv
+ self.attention_s = QKVAttentionLegacy(self.num_heads)
+ self.attention_t = QKVAttentionLegacy(self.num_heads)
+
+ if use_relative_position:
+ self.relative_position_k = RelativePosition(num_units=channels // self.num_heads, max_relative_position=temporal_length)
+ self.relative_position_v = RelativePosition(num_units=channels // self.num_heads, max_relative_position=temporal_length)
+
+ self.proj_out_s = zero_module(conv_nd(1, channels, channels, 1)) # conv_dim, in_channels, out_channels, kernel_size
+ self.proj_out_t = zero_module(conv_nd(1, channels, channels, 1)) # conv_dim, in_channels, out_channels, kernel_size
+
+ def forward(self, x, mask=None):
+ b, c, t, h, w = x.shape
+
+ # spatial
+ out = rearrange(x, 'b c t h w -> (b t) c (h w)')
+ if self.attn_norm_type == "no_norm":
+ qkv = self.qkv_s(out)
+ else:
+ qkv = self.qkv_s(self.norm_s(out))
+ out = self.attention_s(qkv)
+ out = self.proj_out_s(out)
+ out = rearrange(out, '(b t) c (h w) -> b c t h w', b=b,h=h)
+ x += out
+
+ # temporal
+ out = rearrange(x, 'b c t h w -> (b h w) c t')
+ if self.attn_norm_type == "no_norm":
+ qkv = self.qkv_t(out)
+ else:
+ qkv = self.qkv_t(self.norm_t(out))
+
+ # relative positional embedding
+ if self.use_relative_position:
+ len_q = qkv.size()[-1]
+ len_k, len_v = len_q, len_q
+ k_rp = self.relative_position_k(len_q, len_k)
+ v_rp = self.relative_position_v(len_q, len_v) #[T,T,head_dim]
+ out = self.attention_t(qkv, rp=(k_rp, v_rp), mask=self.mask, use_tempoal_causal_attn=self.use_tempoal_causal_attn)
+ else:
+ out = self.attention_t(qkv, rp=None, mask=self.mask, use_tempoal_causal_attn=self.use_tempoal_causal_attn)
+
+ out = self.proj_out_t(out)
+ out = rearrange(out, '(b h w) c t -> b c t h w', b=b,h=h,w=w)
+
+ return (x + out)
+
+# ---------------------------------------------------------------------------------------------------------------
+
+class QKVAttentionLegacy(nn.Module):
+ """
+ A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
+ """
+
+ def __init__(self, n_heads):
+ super().__init__()
+ self.n_heads = n_heads
+
+ def forward(self, qkv, rp=None, mask=None):
+ """
+ Apply QKV attention.
+
+ :param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
+ :return: an [N x (H * C) x T] tensor after attention.
+ """
+ if rp is not None or mask is not None:
+ raise NotImplementedError
+ bs, width, length = qkv.shape
+ assert width % (3 * self.n_heads) == 0
+ ch = width // (3 * self.n_heads)
+ q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
+ scale = 1 / math.sqrt(math.sqrt(ch))
+ weight = th.einsum(
+ "bct,bcs->bts", q * scale, k * scale
+ ) # More stable with f16 than dividing afterwards
+ weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
+ a = th.einsum("bts,bcs->bct", weight, v)
+ return a.reshape(bs, -1, length)
+
+ @staticmethod
+ def count_flops(model, _x, y):
+ return count_flops_attn(model, _x, y)
+
+# ---------------------------------------------------------------------------------------------------------------
+
+class QKVAttention(nn.Module):
+ """
+ A module which performs QKV attention and splits in a different order.
+ """
+
+ def __init__(self, n_heads):
+ super().__init__()
+ self.n_heads = n_heads
+
+ def forward(self, qkv, rp=None, mask=None, use_tempoal_causal_attn=False):
+ """
+ Apply QKV attention.
+
+ :param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
+ :return: an [N x (H * C) x T] tensor after attention.
+ """
+ bs, width, length = qkv.shape
+ assert width % (3 * self.n_heads) == 0
+ ch = width // (3 * self.n_heads)
+ # print('qkv', qkv.size())
+ q, k, v = qkv.chunk(3, dim=1)
+ scale = 1 / math.sqrt(math.sqrt(ch))
+ # print('bs, self.n_heads, ch, length', bs, self.n_heads, ch, length)
+
+ weight = th.einsum(
+ "bct,bcs->bts",
+ (q * scale).view(bs * self.n_heads, ch, length),
+ (k * scale).view(bs * self.n_heads, ch, length),
+ ) # More stable with f16 than dividing afterwards
+ # weight:[b,t,s] b=bs*n_heads*T
+
+ if rp is not None:
+ k_rp, v_rp = rp # [length, length, head_dim] [8, 8, 48]
+ weight2 = th.einsum(
+ 'bct,tsc->bst',
+ (q * scale).view(bs * self.n_heads, ch, length),
+ k_rp
+ )
+ weight += weight2
+
+ if use_tempoal_causal_attn:
+ # weight = torch.tril(weight)
+ assert(mask is None), f'Not implemented for merging two masks!'
+ mask = torch.tril(torch.ones(weight.shape))
+ else:
+ if mask is not None: # only keep upper-left matrix
+ # process mask
+ c, t, _ = weight.shape
+
+ if mask.shape[-1] > t:
+ mask = mask[:, :t, :t]
+ elif mask.shape[-1] < t: # pad ones
+ mask_ = th.zeros([c,t,t]).to(mask.device)
+ t_ = mask.shape[-1]
+ mask_[:, :t_, :t_] = mask
+ mask = mask_
+ else:
+ assert(weight.shape[-1] == mask.shape[-1]), f'weight={weight.shape}, mask={mask.shape}'
+
+ if mask is not None:
+ INF = -1e8 #float('-inf')
+ weight = weight.float().masked_fill(mask == 0, INF)
+
+ weight = F.softmax(weight.float(), dim=-1).type(weight.dtype) #[256, 8, 8] [b, t, t] b=bs*n_heads*h*w,t=nframes
+ # weight = F.softmax(weight, dim=-1)#[256, 8, 8] [b, t, t] b=bs*n_heads*h*w,t=nframes
+ a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length)) #[256, 48, 8] [b, head_dim, t]
+
+ if rp is not None:
+ a2 = th.einsum(
+ "bts,tsc->btc",
+ weight,
+ v_rp
+ ).transpose(1,2) # btc->bct
+ a += a2
+
+ return a.reshape(bs, -1, length)
+
+# ---------------------------------------------------------------------------------------------------------------
+
+# ---------------------------------------------------------------------------------------------------------------
diff --git a/lvdm/modules/encoders/__init__.py b/lvdm/modules/encoders/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/lvdm/modules/encoders/adapter.py b/lvdm/modules/encoders/adapter.py
new file mode 100644
index 0000000000000000000000000000000000000000..a65a1feae97853ef23cead5e2462c0e547392336
--- /dev/null
+++ b/lvdm/modules/encoders/adapter.py
@@ -0,0 +1,102 @@
+import torch.nn as nn
+
+from lvdm.basics import avg_pool_nd, conv_nd
+
+
+class Downsample(nn.Module):
+ """
+ A downsampling layer with an optional convolution.
+ :param channels: channels in the inputs and outputs.
+ :param use_conv: a bool determining if a convolution is applied.
+ :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
+ downsampling occurs in the inner-two dimensions.
+ """
+
+ def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
+ super().__init__()
+ self.channels = channels
+ self.out_channels = out_channels or channels
+ self.use_conv = use_conv
+ self.dims = dims
+ stride = 2 if dims != 3 else (1, 2, 2)
+ if use_conv:
+ self.op = conv_nd(
+ dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
+ )
+ else:
+ assert self.channels == self.out_channels
+ self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
+
+ def forward(self, x):
+ assert x.shape[1] == self.channels
+ return self.op(x)
+
+
+class ResnetBlock(nn.Module):
+ def __init__(self, in_c, out_c, down, ksize=3, sk=False, use_conv=True):
+ super().__init__()
+ ps = ksize // 2
+ if in_c != out_c or sk == False:
+ self.in_conv = nn.Conv2d(in_c, out_c, ksize, 1, ps)
+ else:
+ # print('n_in')
+ self.in_conv = None
+ self.block1 = nn.Conv2d(out_c, out_c, 3, 1, 1)
+ self.act = nn.ReLU()
+ self.block2 = nn.Conv2d(out_c, out_c, ksize, 1, ps)
+ if sk == False:
+ # self.skep = nn.Conv2d(in_c, out_c, ksize, 1, ps) # edit by zhouxiawang
+ self.skep = nn.Conv2d(out_c, out_c, ksize, 1, ps)
+ else:
+ self.skep = None
+
+ self.down = down
+ if self.down == True:
+ self.down_opt = Downsample(in_c, use_conv=use_conv)
+
+ def forward(self, x):
+ if self.down == True:
+ x = self.down_opt(x)
+ if self.in_conv is not None: # edit
+ x = self.in_conv(x)
+
+ h = self.block1(x)
+ h = self.act(h)
+ h = self.block2(h)
+ if self.skep is not None:
+ return h + self.skep(x)
+ else:
+ return h + x
+
+
+class Adapter(nn.Module):
+ def __init__(self, channels=[320, 640, 1280, 1280], nums_rb=3, cin=64, ksize=3, sk=False, use_conv=True):
+ super(Adapter, self).__init__()
+ self.unshuffle = nn.PixelUnshuffle(8)
+ self.channels = channels
+ self.nums_rb = nums_rb
+ self.body = []
+ for i in range(len(channels)):
+ for j in range(nums_rb):
+ if (i != 0) and (j == 0):
+ self.body.append(
+ ResnetBlock(channels[i - 1], channels[i], down=True, ksize=ksize, sk=sk, use_conv=use_conv))
+ else:
+ self.body.append(
+ ResnetBlock(channels[i], channels[i], down=False, ksize=ksize, sk=sk, use_conv=use_conv))
+ self.body = nn.ModuleList(self.body)
+ self.conv_in = nn.Conv2d(cin, channels[0], 3, 1, 1)
+
+ def forward(self, x):
+ # unshuffle
+ x = self.unshuffle(x)
+ # extract features
+ features = []
+ x = self.conv_in(x)
+ for i in range(len(self.channels)):
+ for j in range(self.nums_rb):
+ idx = i * self.nums_rb + j
+ x = self.body[idx](x)
+ features.append(x)
+
+ return features
diff --git a/lvdm/modules/encoders/condition2.py b/lvdm/modules/encoders/condition2.py
new file mode 100644
index 0000000000000000000000000000000000000000..d8e8eb97bbfae38961ce232a02319e768bbda440
--- /dev/null
+++ b/lvdm/modules/encoders/condition2.py
@@ -0,0 +1,352 @@
+import kornia
+import open_clip
+import torch
+import torch.nn as nn
+from torch.utils.checkpoint import checkpoint
+from transformers import (CLIPTextModel, CLIPTokenizer, T5EncoderModel,
+ T5Tokenizer)
+
+from lvdm.common import autocast
+from utils.utils import count_params
+
+
+class AbstractEncoder(nn.Module):
+ def __init__(self):
+ super().__init__()
+
+ def encode(self, *args, **kwargs):
+ raise NotImplementedError
+
+
+class IdentityEncoder(AbstractEncoder):
+
+ def encode(self, x):
+ return x
+
+
+class ClassEmbedder(nn.Module):
+ def __init__(self, embed_dim, n_classes=1000, key='class', ucg_rate=0.1):
+ super().__init__()
+ self.key = key
+ self.embedding = nn.Embedding(n_classes, embed_dim)
+ self.n_classes = n_classes
+ self.ucg_rate = ucg_rate
+
+ def forward(self, batch, key=None, disable_dropout=False):
+ if key is None:
+ key = self.key
+ # this is for use in crossattn
+ c = batch[key][:, None]
+ if self.ucg_rate > 0. and not disable_dropout:
+ mask = 1. - torch.bernoulli(torch.ones_like(c) * self.ucg_rate)
+ c = mask * c + (1 - mask) * torch.ones_like(c) * (self.n_classes - 1)
+ c = c.long()
+ c = self.embedding(c)
+ return c
+
+ def get_unconditional_conditioning(self, bs, device="cuda"):
+ uc_class = self.n_classes - 1 # 1000 classes --> 0 ... 999, one extra class for ucg (class 1000)
+ uc = torch.ones((bs,), device=device) * uc_class
+ uc = {self.key: uc}
+ return uc
+
+
+def disabled_train(self, mode=True):
+ """Overwrite model.train with this function to make sure train/eval mode
+ does not change anymore."""
+ return self
+
+
+class FrozenT5Embedder(AbstractEncoder):
+ """Uses the T5 transformer encoder for text"""
+
+ def __init__(self, version="google/t5-v1_1-large", device="cuda", max_length=77,
+ freeze=True): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl
+ super().__init__()
+ self.tokenizer = T5Tokenizer.from_pretrained(version)
+ self.transformer = T5EncoderModel.from_pretrained(version)
+ self.device = device
+ self.max_length = max_length # TODO: typical value?
+ if freeze:
+ self.freeze()
+
+ def freeze(self):
+ self.transformer = self.transformer.eval()
+ # self.train = disabled_train
+ for param in self.parameters():
+ param.requires_grad = False
+
+ def forward(self, text):
+ batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
+ return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
+ tokens = batch_encoding["input_ids"].to(self.device)
+ outputs = self.transformer(input_ids=tokens)
+
+ z = outputs.last_hidden_state
+ return z
+
+ def encode(self, text):
+ return self(text)
+
+
+class FrozenCLIPEmbedder(AbstractEncoder):
+ """Uses the CLIP transformer encoder for text (from huggingface)"""
+ LAYERS = [
+ "last",
+ "pooled",
+ "hidden"
+ ]
+
+ def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77,
+ freeze=True, layer="last", layer_idx=None): # clip-vit-base-patch32
+ super().__init__()
+ assert layer in self.LAYERS
+ self.tokenizer = CLIPTokenizer.from_pretrained(version)
+ self.transformer = CLIPTextModel.from_pretrained(version)
+ self.device = device
+ self.max_length = max_length
+ if freeze:
+ self.freeze()
+ self.layer = layer
+ self.layer_idx = layer_idx
+ if layer == "hidden":
+ assert layer_idx is not None
+ assert 0 <= abs(layer_idx) <= 12
+
+ def freeze(self):
+ self.transformer = self.transformer.eval()
+ # self.train = disabled_train
+ for param in self.parameters():
+ param.requires_grad = False
+
+ def forward(self, text):
+ batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
+ return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
+ tokens = batch_encoding["input_ids"].to(self.device)
+ outputs = self.transformer(input_ids=tokens, output_hidden_states=self.layer == "hidden")
+ if self.layer == "last":
+ z = outputs.last_hidden_state
+ elif self.layer == "pooled":
+ z = outputs.pooler_output[:, None, :]
+ else:
+ z = outputs.hidden_states[self.layer_idx]
+ return z
+
+ def encode(self, text):
+ return self(text)
+
+
+class ClipImageEmbedder(nn.Module):
+ def __init__(
+ self,
+ model,
+ jit=False,
+ device='cuda' if torch.cuda.is_available() else 'cpu',
+ antialias=True,
+ ucg_rate=0.
+ ):
+ super().__init__()
+ from clip import load as load_clip
+ self.model, _ = load_clip(name=model, device=device, jit=jit)
+
+ self.antialias = antialias
+
+ self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
+ self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)
+ self.ucg_rate = ucg_rate
+
+ def preprocess(self, x):
+ # normalize to [0,1]
+ x = kornia.geometry.resize(x, (224, 224),
+ interpolation='bicubic', align_corners=True,
+ antialias=self.antialias)
+ x = (x + 1.) / 2.
+ # re-normalize according to clip
+ x = kornia.enhance.normalize(x, self.mean, self.std)
+ return x
+
+ def forward(self, x, no_dropout=False):
+ # x is assumed to be in range [-1,1]
+ out = self.model.encode_image(self.preprocess(x))
+ out = out.to(x.dtype)
+ if self.ucg_rate > 0. and not no_dropout:
+ out = torch.bernoulli((1. - self.ucg_rate) * torch.ones(out.shape[0], device=out.device))[:, None] * out
+ return out
+
+
+class FrozenOpenCLIPEmbedder(AbstractEncoder):
+ """
+ Uses the OpenCLIP transformer encoder for text
+ """
+ LAYERS = [
+ # "pooled",
+ "last",
+ "penultimate"
+ ]
+
+ def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", device="cuda", max_length=77,
+ freeze=True, layer="last"):
+ super().__init__()
+ assert layer in self.LAYERS
+ # model, _, _ = open_clip.create_model_and_transforms(arch, device=torch.device('cpu'), pretrained='/apdcephfs/share_1290939/richardxia/PretrainedCache/hub/models--laion--CLIP-ViT-H-14-laion2B-s32B-b79K/snapshots/719803079cc9d41bf3ad0a0916fa24e778320c50/open_clip_pytorch_model.bin')
+ model, _, _ = open_clip.create_model_and_transforms('hf-hub:laion/CLIP-ViT-H-14-laion2B-s32B-b79K')
+ del model.visual
+ self.model = model
+
+ self.device = device
+ self.max_length = max_length
+ if freeze:
+ self.freeze()
+ self.layer = layer
+ if self.layer == "last":
+ self.layer_idx = 0
+ elif self.layer == "penultimate":
+ self.layer_idx = 1
+ else:
+ raise NotImplementedError()
+
+ def freeze(self):
+ self.model = self.model.eval()
+ for param in self.parameters():
+ param.requires_grad = False
+
+ def forward(self, text):
+ tokens = open_clip.tokenize(text)
+ z = self.encode_with_transformer(tokens.to(self.device))
+ return z
+
+ def encode_with_transformer(self, text):
+ x = self.model.token_embedding(text) # [batch_size, n_ctx, d_model]
+ x = x + self.model.positional_embedding
+ x = x.permute(1, 0, 2) # NLD -> LND
+ x = self.text_transformer_forward(x, attn_mask=self.model.attn_mask)
+ x = x.permute(1, 0, 2) # LND -> NLD
+ x = self.model.ln_final(x)
+ return x
+
+ def text_transformer_forward(self, x: torch.Tensor, attn_mask=None):
+ for i, r in enumerate(self.model.transformer.resblocks):
+ if i == len(self.model.transformer.resblocks) - self.layer_idx:
+ break
+ if self.model.transformer.grad_checkpointing and not torch.jit.is_scripting():
+ x = checkpoint(r, x, attn_mask)
+ else:
+ x = r(x, attn_mask=attn_mask)
+ return x
+
+ def encode(self, text):
+ return self(text)
+
+
+class FrozenOpenCLIPImageEmbedder(AbstractEncoder):
+ """
+ Uses the OpenCLIP vision transformer encoder for images
+ """
+
+ def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", device="cuda", max_length=77,
+ freeze=True, layer="pooled", antialias=True, ucg_rate=0.):
+ super().__init__()
+ model, _, _ = open_clip.create_model_and_transforms(arch, device=torch.device('cpu'),
+ pretrained=version, )
+ del model.transformer
+ self.model = model
+
+ self.device = device
+ self.max_length = max_length
+ if freeze:
+ self.freeze()
+ self.layer = layer
+ if self.layer == "penultimate":
+ raise NotImplementedError()
+ self.layer_idx = 1
+
+ self.antialias = antialias
+
+ self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
+ self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)
+ self.ucg_rate = ucg_rate
+
+ def preprocess(self, x):
+ # normalize to [0,1]
+ x = kornia.geometry.resize(x, (224, 224),
+ interpolation='bicubic', align_corners=True,
+ antialias=self.antialias)
+ x = (x + 1.) / 2.
+ # renormalize according to clip
+ x = kornia.enhance.normalize(x, self.mean, self.std)
+ return x
+
+ def freeze(self):
+ self.model = self.model.eval()
+ for param in self.parameters():
+ param.requires_grad = False
+
+ @autocast
+ def forward(self, image, no_dropout=False):
+ z = self.encode_with_vision_transformer(image)
+ if self.ucg_rate > 0. and not no_dropout:
+ z = torch.bernoulli((1. - self.ucg_rate) * torch.ones(z.shape[0], device=z.device))[:, None] * z
+ return z
+
+ def encode_with_vision_transformer(self, img):
+ img = self.preprocess(img)
+ x = self.model.visual(img)
+ return x
+
+ def encode(self, text):
+ return self(text)
+
+
+class FrozenCLIPT5Encoder(AbstractEncoder):
+ def __init__(self, clip_version="openai/clip-vit-large-patch14", t5_version="google/t5-v1_1-xl", device="cuda",
+ clip_max_length=77, t5_max_length=77):
+ super().__init__()
+ self.clip_encoder = FrozenCLIPEmbedder(clip_version, device, max_length=clip_max_length)
+ self.t5_encoder = FrozenT5Embedder(t5_version, device, max_length=t5_max_length)
+ print(f"{self.clip_encoder.__class__.__name__} has {count_params(self.clip_encoder) * 1.e-6:.2f} M parameters, "
+ f"{self.t5_encoder.__class__.__name__} comes with {count_params(self.t5_encoder) * 1.e-6:.2f} M params.")
+
+ def encode(self, text):
+ return self(text)
+
+ def forward(self, text):
+ clip_z = self.clip_encoder.encode(text)
+ t5_z = self.t5_encoder.encode(text)
+ return [clip_z, t5_z]
+
+'''
+from ldm.modules.diffusionmodules.upscaling import ImageConcatWithNoiseAugmentation
+from ldm.modules.diffusionmodules.openaimodel import Timestep
+
+class CLIPEmbeddingNoiseAugmentation(ImageConcatWithNoiseAugmentation):
+ def __init__(self, *args, clip_stats_path=None, timestep_dim=256, **kwargs):
+ super().__init__(*args, **kwargs)
+ if clip_stats_path is None:
+ clip_mean, clip_std = torch.zeros(timestep_dim), torch.ones(timestep_dim)
+ else:
+ clip_mean, clip_std = torch.load(clip_stats_path, map_location="cpu")
+ self.register_buffer("data_mean", clip_mean[None, :], persistent=False)
+ self.register_buffer("data_std", clip_std[None, :], persistent=False)
+ self.time_embed = Timestep(timestep_dim)
+
+ def scale(self, x):
+ # re-normalize to centered mean and unit variance
+ x = (x - self.data_mean) * 1. / self.data_std
+ return x
+
+ def unscale(self, x):
+ # back to original data stats
+ x = (x * self.data_std) + self.data_mean
+ return x
+
+ def forward(self, x, noise_level=None):
+ if noise_level is None:
+ noise_level = torch.randint(0, self.max_noise_level, (x.shape[0],), device=x.device).long()
+ else:
+ assert isinstance(noise_level, torch.Tensor)
+ x = self.scale(x)
+ z = self.q_sample(x, noise_level)
+ z = self.unscale(z)
+ noise_level = self.time_embed(noise_level)
+ return z, noise_level
+'''
\ No newline at end of file
diff --git a/lvdm/modules/networks/ae_modules.py b/lvdm/modules/networks/ae_modules.py
new file mode 100644
index 0000000000000000000000000000000000000000..034dd0aa5c0bcaccbfb05462748050fd2fee67aa
--- /dev/null
+++ b/lvdm/modules/networks/ae_modules.py
@@ -0,0 +1,847 @@
+# pytorch_diffusion + derived encoder decoder
+import math
+
+import torch
+import numpy as np
+import torch.nn as nn
+from einops import rearrange
+
+from utils.utils import instantiate_from_config
+from lvdm.modules.attention import LinearAttention
+
+def nonlinearity(x):
+ # swish
+ return x*torch.sigmoid(x)
+
+
+def Normalize(in_channels, num_groups=32):
+ return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
+
+
+
+class LinAttnBlock(LinearAttention):
+ """to match AttnBlock usage"""
+ def __init__(self, in_channels):
+ super().__init__(dim=in_channels, heads=1, dim_head=in_channels)
+
+
+class AttnBlock(nn.Module):
+ def __init__(self, in_channels):
+ super().__init__()
+ self.in_channels = in_channels
+
+ self.norm = Normalize(in_channels)
+ self.q = torch.nn.Conv2d(in_channels,
+ in_channels,
+ kernel_size=1,
+ stride=1,
+ padding=0)
+ self.k = torch.nn.Conv2d(in_channels,
+ in_channels,
+ kernel_size=1,
+ stride=1,
+ padding=0)
+ self.v = torch.nn.Conv2d(in_channels,
+ in_channels,
+ kernel_size=1,
+ stride=1,
+ padding=0)
+ self.proj_out = torch.nn.Conv2d(in_channels,
+ in_channels,
+ kernel_size=1,
+ stride=1,
+ padding=0)
+
+ def forward(self, x):
+ h_ = x
+ h_ = self.norm(h_)
+ q = self.q(h_)
+ k = self.k(h_)
+ v = self.v(h_)
+
+ # compute attention
+ b,c,h,w = q.shape
+ q = q.reshape(b,c,h*w) # bcl
+ q = q.permute(0,2,1) # bcl -> blc l=hw
+ k = k.reshape(b,c,h*w) # bcl
+
+ w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
+ w_ = w_ * (int(c)**(-0.5))
+ w_ = torch.nn.functional.softmax(w_, dim=2)
+
+ # attend to values
+ v = v.reshape(b,c,h*w)
+ w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q)
+ h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
+ h_ = h_.reshape(b,c,h,w)
+
+ h_ = self.proj_out(h_)
+
+ return x+h_
+
+def make_attn(in_channels, attn_type="vanilla"):
+ assert attn_type in ["vanilla", "linear", "none"], f'attn_type {attn_type} unknown'
+ #print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
+ if attn_type == "vanilla":
+ return AttnBlock(in_channels)
+ elif attn_type == "none":
+ return nn.Identity(in_channels)
+ else:
+ return LinAttnBlock(in_channels)
+
+class Downsample(nn.Module):
+ def __init__(self, in_channels, with_conv):
+ super().__init__()
+ self.with_conv = with_conv
+ self.in_channels = in_channels
+ if self.with_conv:
+ # no asymmetric padding in torch conv, must do it ourselves
+ self.conv = torch.nn.Conv2d(in_channels,
+ in_channels,
+ kernel_size=3,
+ stride=2,
+ padding=0)
+ def forward(self, x):
+ if self.with_conv:
+ pad = (0,1,0,1)
+ x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
+ x = self.conv(x)
+ else:
+ x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
+ return x
+
+class Upsample(nn.Module):
+ def __init__(self, in_channels, with_conv):
+ super().__init__()
+ self.with_conv = with_conv
+ self.in_channels = in_channels
+ if self.with_conv:
+ self.conv = torch.nn.Conv2d(in_channels,
+ in_channels,
+ kernel_size=3,
+ stride=1,
+ padding=1)
+
+ def forward(self, x):
+ x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
+ if self.with_conv:
+ x = self.conv(x)
+ return x
+
+def get_timestep_embedding(timesteps, embedding_dim):
+ """
+ This matches the implementation in Denoising Diffusion Probabilistic Models:
+ From Fairseq.
+ Build sinusoidal embeddings.
+ This matches the implementation in tensor2tensor, but differs slightly
+ from the description in Section 3.5 of "Attention Is All You Need".
+ """
+ assert len(timesteps.shape) == 1
+
+ half_dim = embedding_dim // 2
+ emb = math.log(10000) / (half_dim - 1)
+ emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
+ emb = emb.to(device=timesteps.device)
+ emb = timesteps.float()[:, None] * emb[None, :]
+ emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
+ if embedding_dim % 2 == 1: # zero pad
+ emb = torch.nn.functional.pad(emb, (0,1,0,0))
+ return emb
+
+
+
+class ResnetBlock(nn.Module):
+ def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
+ dropout, temb_channels=512):
+ super().__init__()
+ self.in_channels = in_channels
+ out_channels = in_channels if out_channels is None else out_channels
+ self.out_channels = out_channels
+ self.use_conv_shortcut = conv_shortcut
+
+ self.norm1 = Normalize(in_channels)
+ self.conv1 = torch.nn.Conv2d(in_channels,
+ out_channels,
+ kernel_size=3,
+ stride=1,
+ padding=1)
+ if temb_channels > 0:
+ self.temb_proj = torch.nn.Linear(temb_channels,
+ out_channels)
+ self.norm2 = Normalize(out_channels)
+ self.dropout = torch.nn.Dropout(dropout)
+ self.conv2 = torch.nn.Conv2d(out_channels,
+ out_channels,
+ kernel_size=3,
+ stride=1,
+ padding=1)
+ if self.in_channels != self.out_channels:
+ if self.use_conv_shortcut:
+ self.conv_shortcut = torch.nn.Conv2d(in_channels,
+ out_channels,
+ kernel_size=3,
+ stride=1,
+ padding=1)
+ else:
+ self.nin_shortcut = torch.nn.Conv2d(in_channels,
+ out_channels,
+ kernel_size=1,
+ stride=1,
+ padding=0)
+
+ def forward(self, x, temb):
+ h = x
+ h = self.norm1(h)
+ h = nonlinearity(h)
+ h = self.conv1(h)
+
+ if temb is not None:
+ h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None]
+
+ h = self.norm2(h)
+ h = nonlinearity(h)
+ h = self.dropout(h)
+ h = self.conv2(h)
+
+ if self.in_channels != self.out_channels:
+ if self.use_conv_shortcut:
+ x = self.conv_shortcut(x)
+ else:
+ x = self.nin_shortcut(x)
+
+ return x+h
+
+class Model(nn.Module):
+ def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
+ attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
+ resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"):
+ super().__init__()
+ if use_linear_attn: attn_type = "linear"
+ self.ch = ch
+ self.temb_ch = self.ch*4
+ self.num_resolutions = len(ch_mult)
+ self.num_res_blocks = num_res_blocks
+ self.resolution = resolution
+ self.in_channels = in_channels
+
+ self.use_timestep = use_timestep
+ if self.use_timestep:
+ # timestep embedding
+ self.temb = nn.Module()
+ self.temb.dense = nn.ModuleList([
+ torch.nn.Linear(self.ch,
+ self.temb_ch),
+ torch.nn.Linear(self.temb_ch,
+ self.temb_ch),
+ ])
+
+ # downsampling
+ self.conv_in = torch.nn.Conv2d(in_channels,
+ self.ch,
+ kernel_size=3,
+ stride=1,
+ padding=1)
+
+ curr_res = resolution
+ in_ch_mult = (1,)+tuple(ch_mult)
+ self.down = nn.ModuleList()
+ for i_level in range(self.num_resolutions):
+ block = nn.ModuleList()
+ attn = nn.ModuleList()
+ block_in = ch*in_ch_mult[i_level]
+ block_out = ch*ch_mult[i_level]
+ for i_block in range(self.num_res_blocks):
+ block.append(ResnetBlock(in_channels=block_in,
+ out_channels=block_out,
+ temb_channels=self.temb_ch,
+ dropout=dropout))
+ block_in = block_out
+ if curr_res in attn_resolutions:
+ attn.append(make_attn(block_in, attn_type=attn_type))
+ down = nn.Module()
+ down.block = block
+ down.attn = attn
+ if i_level != self.num_resolutions-1:
+ down.downsample = Downsample(block_in, resamp_with_conv)
+ curr_res = curr_res // 2
+ self.down.append(down)
+
+ # middle
+ self.mid = nn.Module()
+ self.mid.block_1 = ResnetBlock(in_channels=block_in,
+ out_channels=block_in,
+ temb_channels=self.temb_ch,
+ dropout=dropout)
+ self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
+ self.mid.block_2 = ResnetBlock(in_channels=block_in,
+ out_channels=block_in,
+ temb_channels=self.temb_ch,
+ dropout=dropout)
+
+ # upsampling
+ self.up = nn.ModuleList()
+ for i_level in reversed(range(self.num_resolutions)):
+ block = nn.ModuleList()
+ attn = nn.ModuleList()
+ block_out = ch*ch_mult[i_level]
+ skip_in = ch*ch_mult[i_level]
+ for i_block in range(self.num_res_blocks+1):
+ if i_block == self.num_res_blocks:
+ skip_in = ch*in_ch_mult[i_level]
+ block.append(ResnetBlock(in_channels=block_in+skip_in,
+ out_channels=block_out,
+ temb_channels=self.temb_ch,
+ dropout=dropout))
+ block_in = block_out
+ if curr_res in attn_resolutions:
+ attn.append(make_attn(block_in, attn_type=attn_type))
+ up = nn.Module()
+ up.block = block
+ up.attn = attn
+ if i_level != 0:
+ up.upsample = Upsample(block_in, resamp_with_conv)
+ curr_res = curr_res * 2
+ self.up.insert(0, up) # prepend to get consistent order
+
+ # end
+ self.norm_out = Normalize(block_in)
+ self.conv_out = torch.nn.Conv2d(block_in,
+ out_ch,
+ kernel_size=3,
+ stride=1,
+ padding=1)
+
+ def forward(self, x, t=None, context=None):
+ #assert x.shape[2] == x.shape[3] == self.resolution
+ if context is not None:
+ # assume aligned context, cat along channel axis
+ x = torch.cat((x, context), dim=1)
+ if self.use_timestep:
+ # timestep embedding
+ assert t is not None
+ temb = get_timestep_embedding(t, self.ch)
+ temb = self.temb.dense[0](temb)
+ temb = nonlinearity(temb)
+ temb = self.temb.dense[1](temb)
+ else:
+ temb = None
+
+ # downsampling
+ hs = [self.conv_in(x)]
+ for i_level in range(self.num_resolutions):
+ for i_block in range(self.num_res_blocks):
+ h = self.down[i_level].block[i_block](hs[-1], temb)
+ if len(self.down[i_level].attn) > 0:
+ h = self.down[i_level].attn[i_block](h)
+ hs.append(h)
+ if i_level != self.num_resolutions-1:
+ hs.append(self.down[i_level].downsample(hs[-1]))
+
+ # middle
+ h = hs[-1]
+ h = self.mid.block_1(h, temb)
+ h = self.mid.attn_1(h)
+ h = self.mid.block_2(h, temb)
+
+ # upsampling
+ for i_level in reversed(range(self.num_resolutions)):
+ for i_block in range(self.num_res_blocks+1):
+ h = self.up[i_level].block[i_block](
+ torch.cat([h, hs.pop()], dim=1), temb)
+ if len(self.up[i_level].attn) > 0:
+ h = self.up[i_level].attn[i_block](h)
+ if i_level != 0:
+ h = self.up[i_level].upsample(h)
+
+ # end
+ h = self.norm_out(h)
+ h = nonlinearity(h)
+ h = self.conv_out(h)
+ return h
+
+ def get_last_layer(self):
+ return self.conv_out.weight
+
+
+class Encoder(nn.Module):
+ def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
+ attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
+ resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla",
+ **ignore_kwargs):
+ super().__init__()
+ if use_linear_attn: attn_type = "linear"
+ self.ch = ch
+ self.temb_ch = 0
+ self.num_resolutions = len(ch_mult)
+ self.num_res_blocks = num_res_blocks
+ self.resolution = resolution
+ self.in_channels = in_channels
+
+ # downsampling
+ self.conv_in = torch.nn.Conv2d(in_channels,
+ self.ch,
+ kernel_size=3,
+ stride=1,
+ padding=1)
+
+ curr_res = resolution
+ in_ch_mult = (1,)+tuple(ch_mult)
+ self.in_ch_mult = in_ch_mult
+ self.down = nn.ModuleList()
+ for i_level in range(self.num_resolutions):
+ block = nn.ModuleList()
+ attn = nn.ModuleList()
+ block_in = ch*in_ch_mult[i_level]
+ block_out = ch*ch_mult[i_level]
+ for i_block in range(self.num_res_blocks):
+ block.append(ResnetBlock(in_channels=block_in,
+ out_channels=block_out,
+ temb_channels=self.temb_ch,
+ dropout=dropout))
+ block_in = block_out
+ if curr_res in attn_resolutions:
+ attn.append(make_attn(block_in, attn_type=attn_type))
+ down = nn.Module()
+ down.block = block
+ down.attn = attn
+ if i_level != self.num_resolutions-1:
+ down.downsample = Downsample(block_in, resamp_with_conv)
+ curr_res = curr_res // 2
+ self.down.append(down)
+
+ # middle
+ self.mid = nn.Module()
+ self.mid.block_1 = ResnetBlock(in_channels=block_in,
+ out_channels=block_in,
+ temb_channels=self.temb_ch,
+ dropout=dropout)
+ self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
+ self.mid.block_2 = ResnetBlock(in_channels=block_in,
+ out_channels=block_in,
+ temb_channels=self.temb_ch,
+ dropout=dropout)
+
+ # end
+ self.norm_out = Normalize(block_in)
+ self.conv_out = torch.nn.Conv2d(block_in,
+ 2*z_channels if double_z else z_channels,
+ kernel_size=3,
+ stride=1,
+ padding=1)
+
+ def forward(self, x):
+ # timestep embedding
+ temb = None
+
+ # print(f'encoder-input={x.shape}')
+ # downsampling
+ hs = [self.conv_in(x)]
+ # print(f'encoder-conv in feat={hs[0].shape}')
+ for i_level in range(self.num_resolutions):
+ for i_block in range(self.num_res_blocks):
+ h = self.down[i_level].block[i_block](hs[-1], temb)
+ # print(f'encoder-down feat={h.shape}')
+ if len(self.down[i_level].attn) > 0:
+ h = self.down[i_level].attn[i_block](h)
+ hs.append(h)
+ if i_level != self.num_resolutions-1:
+ # print(f'encoder-downsample (input)={hs[-1].shape}')
+ hs.append(self.down[i_level].downsample(hs[-1]))
+ # print(f'encoder-downsample (output)={hs[-1].shape}')
+
+ # middle
+ h = hs[-1]
+ h = self.mid.block_1(h, temb)
+ # print(f'encoder-mid1 feat={h.shape}')
+ h = self.mid.attn_1(h)
+ h = self.mid.block_2(h, temb)
+ # print(f'encoder-mid2 feat={h.shape}')
+
+ # end
+ h = self.norm_out(h)
+ h = nonlinearity(h)
+ h = self.conv_out(h)
+ # print(f'end feat={h.shape}')
+ return h
+
+
+class Decoder(nn.Module):
+ def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
+ attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
+ resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
+ attn_type="vanilla", **ignorekwargs):
+ super().__init__()
+ if use_linear_attn: attn_type = "linear"
+ self.ch = ch
+ self.temb_ch = 0
+ self.num_resolutions = len(ch_mult)
+ self.num_res_blocks = num_res_blocks
+ self.resolution = resolution
+ self.in_channels = in_channels
+ self.give_pre_end = give_pre_end
+ self.tanh_out = tanh_out
+
+ # compute in_ch_mult, block_in and curr_res at lowest res
+ in_ch_mult = (1,)+tuple(ch_mult)
+ block_in = ch*ch_mult[self.num_resolutions-1]
+ curr_res = resolution // 2**(self.num_resolutions-1)
+ self.z_shape = (1,z_channels,curr_res,curr_res)
+ print("AE working on z of shape {} = {} dimensions.".format(
+ self.z_shape, np.prod(self.z_shape)))
+
+ # z to block_in
+ self.conv_in = torch.nn.Conv2d(z_channels,
+ block_in,
+ kernel_size=3,
+ stride=1,
+ padding=1)
+
+ # middle
+ self.mid = nn.Module()
+ self.mid.block_1 = ResnetBlock(in_channels=block_in,
+ out_channels=block_in,
+ temb_channels=self.temb_ch,
+ dropout=dropout)
+ self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
+ self.mid.block_2 = ResnetBlock(in_channels=block_in,
+ out_channels=block_in,
+ temb_channels=self.temb_ch,
+ dropout=dropout)
+
+ # upsampling
+ self.up = nn.ModuleList()
+ for i_level in reversed(range(self.num_resolutions)):
+ block = nn.ModuleList()
+ attn = nn.ModuleList()
+ block_out = ch*ch_mult[i_level]
+ for i_block in range(self.num_res_blocks+1):
+ block.append(ResnetBlock(in_channels=block_in,
+ out_channels=block_out,
+ temb_channels=self.temb_ch,
+ dropout=dropout))
+ block_in = block_out
+ if curr_res in attn_resolutions:
+ attn.append(make_attn(block_in, attn_type=attn_type))
+ up = nn.Module()
+ up.block = block
+ up.attn = attn
+ if i_level != 0:
+ up.upsample = Upsample(block_in, resamp_with_conv)
+ curr_res = curr_res * 2
+ self.up.insert(0, up) # prepend to get consistent order
+
+ # end
+ self.norm_out = Normalize(block_in)
+ self.conv_out = torch.nn.Conv2d(block_in,
+ out_ch,
+ kernel_size=3,
+ stride=1,
+ padding=1)
+
+ def forward(self, z):
+ #assert z.shape[1:] == self.z_shape[1:]
+ self.last_z_shape = z.shape
+
+ # print(f'decoder-input={z.shape}')
+ # timestep embedding
+ temb = None
+
+ # z to block_in
+ h = self.conv_in(z)
+ # print(f'decoder-conv in feat={h.shape}')
+
+ # middle
+ h = self.mid.block_1(h, temb)
+ h = self.mid.attn_1(h)
+ h = self.mid.block_2(h, temb)
+ # print(f'decoder-mid feat={h.shape}')
+
+ # upsampling
+ for i_level in reversed(range(self.num_resolutions)):
+ for i_block in range(self.num_res_blocks+1):
+ h = self.up[i_level].block[i_block](h, temb)
+ if len(self.up[i_level].attn) > 0:
+ h = self.up[i_level].attn[i_block](h)
+ # print(f'decoder-up feat={h.shape}')
+ if i_level != 0:
+ h = self.up[i_level].upsample(h)
+ # print(f'decoder-upsample feat={h.shape}')
+
+ # end
+ if self.give_pre_end:
+ return h
+
+ h = self.norm_out(h)
+ h = nonlinearity(h)
+ h = self.conv_out(h)
+ # print(f'decoder-conv_out feat={h.shape}')
+ if self.tanh_out:
+ h = torch.tanh(h)
+ return h
+
+
+class SimpleDecoder(nn.Module):
+ def __init__(self, in_channels, out_channels, *args, **kwargs):
+ super().__init__()
+ self.model = nn.ModuleList([nn.Conv2d(in_channels, in_channels, 1),
+ ResnetBlock(in_channels=in_channels,
+ out_channels=2 * in_channels,
+ temb_channels=0, dropout=0.0),
+ ResnetBlock(in_channels=2 * in_channels,
+ out_channels=4 * in_channels,
+ temb_channels=0, dropout=0.0),
+ ResnetBlock(in_channels=4 * in_channels,
+ out_channels=2 * in_channels,
+ temb_channels=0, dropout=0.0),
+ nn.Conv2d(2*in_channels, in_channels, 1),
+ Upsample(in_channels, with_conv=True)])
+ # end
+ self.norm_out = Normalize(in_channels)
+ self.conv_out = torch.nn.Conv2d(in_channels,
+ out_channels,
+ kernel_size=3,
+ stride=1,
+ padding=1)
+
+ def forward(self, x):
+ for i, layer in enumerate(self.model):
+ if i in [1,2,3]:
+ x = layer(x, None)
+ else:
+ x = layer(x)
+
+ h = self.norm_out(x)
+ h = nonlinearity(h)
+ x = self.conv_out(h)
+ return x
+
+
+class UpsampleDecoder(nn.Module):
+ def __init__(self, in_channels, out_channels, ch, num_res_blocks, resolution,
+ ch_mult=(2,2), dropout=0.0):
+ super().__init__()
+ # upsampling
+ self.temb_ch = 0
+ self.num_resolutions = len(ch_mult)
+ self.num_res_blocks = num_res_blocks
+ block_in = in_channels
+ curr_res = resolution // 2 ** (self.num_resolutions - 1)
+ self.res_blocks = nn.ModuleList()
+ self.upsample_blocks = nn.ModuleList()
+ for i_level in range(self.num_resolutions):
+ res_block = []
+ block_out = ch * ch_mult[i_level]
+ for i_block in range(self.num_res_blocks + 1):
+ res_block.append(ResnetBlock(in_channels=block_in,
+ out_channels=block_out,
+ temb_channels=self.temb_ch,
+ dropout=dropout))
+ block_in = block_out
+ self.res_blocks.append(nn.ModuleList(res_block))
+ if i_level != self.num_resolutions - 1:
+ self.upsample_blocks.append(Upsample(block_in, True))
+ curr_res = curr_res * 2
+
+ # end
+ self.norm_out = Normalize(block_in)
+ self.conv_out = torch.nn.Conv2d(block_in,
+ out_channels,
+ kernel_size=3,
+ stride=1,
+ padding=1)
+
+ def forward(self, x):
+ # upsampling
+ h = x
+ for k, i_level in enumerate(range(self.num_resolutions)):
+ for i_block in range(self.num_res_blocks + 1):
+ h = self.res_blocks[i_level][i_block](h, None)
+ if i_level != self.num_resolutions - 1:
+ h = self.upsample_blocks[k](h)
+ h = self.norm_out(h)
+ h = nonlinearity(h)
+ h = self.conv_out(h)
+ return h
+
+
+class LatentRescaler(nn.Module):
+ def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2):
+ super().__init__()
+ # residual block, interpolate, residual block
+ self.factor = factor
+ self.conv_in = nn.Conv2d(in_channels,
+ mid_channels,
+ kernel_size=3,
+ stride=1,
+ padding=1)
+ self.res_block1 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
+ out_channels=mid_channels,
+ temb_channels=0,
+ dropout=0.0) for _ in range(depth)])
+ self.attn = AttnBlock(mid_channels)
+ self.res_block2 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
+ out_channels=mid_channels,
+ temb_channels=0,
+ dropout=0.0) for _ in range(depth)])
+
+ self.conv_out = nn.Conv2d(mid_channels,
+ out_channels,
+ kernel_size=1,
+ )
+
+ def forward(self, x):
+ x = self.conv_in(x)
+ for block in self.res_block1:
+ x = block(x, None)
+ x = torch.nn.functional.interpolate(x, size=(int(round(x.shape[2]*self.factor)), int(round(x.shape[3]*self.factor))))
+ x = self.attn(x)
+ for block in self.res_block2:
+ x = block(x, None)
+ x = self.conv_out(x)
+ return x
+
+
+class MergedRescaleEncoder(nn.Module):
+ def __init__(self, in_channels, ch, resolution, out_ch, num_res_blocks,
+ attn_resolutions, dropout=0.0, resamp_with_conv=True,
+ ch_mult=(1,2,4,8), rescale_factor=1.0, rescale_module_depth=1):
+ super().__init__()
+ intermediate_chn = ch * ch_mult[-1]
+ self.encoder = Encoder(in_channels=in_channels, num_res_blocks=num_res_blocks, ch=ch, ch_mult=ch_mult,
+ z_channels=intermediate_chn, double_z=False, resolution=resolution,
+ attn_resolutions=attn_resolutions, dropout=dropout, resamp_with_conv=resamp_with_conv,
+ out_ch=None)
+ self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=intermediate_chn,
+ mid_channels=intermediate_chn, out_channels=out_ch, depth=rescale_module_depth)
+
+ def forward(self, x):
+ x = self.encoder(x)
+ x = self.rescaler(x)
+ return x
+
+
+class MergedRescaleDecoder(nn.Module):
+ def __init__(self, z_channels, out_ch, resolution, num_res_blocks, attn_resolutions, ch, ch_mult=(1,2,4,8),
+ dropout=0.0, resamp_with_conv=True, rescale_factor=1.0, rescale_module_depth=1):
+ super().__init__()
+ tmp_chn = z_channels*ch_mult[-1]
+ self.decoder = Decoder(out_ch=out_ch, z_channels=tmp_chn, attn_resolutions=attn_resolutions, dropout=dropout,
+ resamp_with_conv=resamp_with_conv, in_channels=None, num_res_blocks=num_res_blocks,
+ ch_mult=ch_mult, resolution=resolution, ch=ch)
+ self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=z_channels, mid_channels=tmp_chn,
+ out_channels=tmp_chn, depth=rescale_module_depth)
+
+ def forward(self, x):
+ x = self.rescaler(x)
+ x = self.decoder(x)
+ return x
+
+
+class Upsampler(nn.Module):
+ def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2):
+ super().__init__()
+ assert out_size >= in_size
+ num_blocks = int(np.log2(out_size//in_size))+1
+ factor_up = 1.+ (out_size % in_size)
+ print(f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}")
+ self.rescaler = LatentRescaler(factor=factor_up, in_channels=in_channels, mid_channels=2*in_channels,
+ out_channels=in_channels)
+ self.decoder = Decoder(out_ch=out_channels, resolution=out_size, z_channels=in_channels, num_res_blocks=2,
+ attn_resolutions=[], in_channels=None, ch=in_channels,
+ ch_mult=[ch_mult for _ in range(num_blocks)])
+
+ def forward(self, x):
+ x = self.rescaler(x)
+ x = self.decoder(x)
+ return x
+
+
+class Resize(nn.Module):
+ def __init__(self, in_channels=None, learned=False, mode="bilinear"):
+ super().__init__()
+ self.with_conv = learned
+ self.mode = mode
+ if self.with_conv:
+ print(f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode")
+ raise NotImplementedError()
+ assert in_channels is not None
+ # no asymmetric padding in torch conv, must do it ourselves
+ self.conv = torch.nn.Conv2d(in_channels,
+ in_channels,
+ kernel_size=4,
+ stride=2,
+ padding=1)
+
+ def forward(self, x, scale_factor=1.0):
+ if scale_factor==1.0:
+ return x
+ else:
+ x = torch.nn.functional.interpolate(x, mode=self.mode, align_corners=False, scale_factor=scale_factor)
+ return x
+
+class FirstStagePostProcessor(nn.Module):
+
+ def __init__(self, ch_mult:list, in_channels,
+ pretrained_model:nn.Module=None,
+ reshape=False,
+ n_channels=None,
+ dropout=0.,
+ pretrained_config=None):
+ super().__init__()
+ if pretrained_config is None:
+ assert pretrained_model is not None, 'Either "pretrained_model" or "pretrained_config" must not be None'
+ self.pretrained_model = pretrained_model
+ else:
+ assert pretrained_config is not None, 'Either "pretrained_model" or "pretrained_config" must not be None'
+ self.instantiate_pretrained(pretrained_config)
+
+ self.do_reshape = reshape
+
+ if n_channels is None:
+ n_channels = self.pretrained_model.encoder.ch
+
+ self.proj_norm = Normalize(in_channels,num_groups=in_channels//2)
+ self.proj = nn.Conv2d(in_channels,n_channels,kernel_size=3,
+ stride=1,padding=1)
+
+ blocks = []
+ downs = []
+ ch_in = n_channels
+ for m in ch_mult:
+ blocks.append(ResnetBlock(in_channels=ch_in,out_channels=m*n_channels,dropout=dropout))
+ ch_in = m * n_channels
+ downs.append(Downsample(ch_in, with_conv=False))
+
+ self.model = nn.ModuleList(blocks)
+ self.downsampler = nn.ModuleList(downs)
+
+
+ def instantiate_pretrained(self, config):
+ model = instantiate_from_config(config)
+ self.pretrained_model = model.eval()
+ # self.pretrained_model.train = False
+ for param in self.pretrained_model.parameters():
+ param.requires_grad = False
+
+
+ @torch.no_grad()
+ def encode_with_pretrained(self,x):
+ c = self.pretrained_model.encode(x)
+ if isinstance(c, DiagonalGaussianDistribution):
+ c = c.mode()
+ return c
+
+ def forward(self,x):
+ z_fs = self.encode_with_pretrained(x)
+ z = self.proj_norm(z_fs)
+ z = self.proj(z)
+ z = nonlinearity(z)
+
+ for submodel, downmodel in zip(self.model,self.downsampler):
+ z = submodel(z,temb=None)
+ z = downmodel(z)
+
+ if self.do_reshape:
+ z = rearrange(z,'b c h w -> b (h w) c')
+ return z
+
diff --git a/lvdm/modules/networks/openaimodel3d_next.py b/lvdm/modules/networks/openaimodel3d_next.py
new file mode 100644
index 0000000000000000000000000000000000000000..49ab27a07a16b8bebc16a2172bba9cb4f9a986bd
--- /dev/null
+++ b/lvdm/modules/networks/openaimodel3d_next.py
@@ -0,0 +1,580 @@
+import math
+import random
+from abc import abstractmethod
+from functools import partial
+
+import numpy as np
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+from einops import rearrange, repeat
+
+from lvdm.basics import (avg_pool_nd, conv_nd, linear, normalization,
+ zero_module)
+from lvdm.common import checkpoint
+from lvdm.models.utils_diffusion import timestep_embedding
+from lvdm.modules.attention import SpatialTransformer, TemporalTransformer
+
+
+class TimestepBlock(nn.Module):
+ """
+ Any module where forward() takes timestep embeddings as a second argument.
+ """
+ @abstractmethod
+ def forward(self, x, emb):
+ """
+ Apply the module to `x` given `emb` timestep embeddings.
+ """
+
+
+class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
+ """
+ A sequential module that passes timestep embeddings to the children that
+ support it as an extra input.
+ """
+
+ def forward(self, x, emb, context=None, batch_size=None, is_imgbatch=False):
+ for layer in self:
+ if isinstance(layer, TimestepBlock):
+ x = layer(x, emb, batch_size, is_imgbatch=is_imgbatch)
+ elif isinstance(layer, SpatialTransformer):
+ x = layer(x, context)
+ elif isinstance(layer, TemporalTransformer):
+ x = rearrange(x, '(b f) c h w -> b c f h w', b=batch_size)
+ x = layer(x, context, is_imgbatch=is_imgbatch)
+ x = rearrange(x, 'b c f h w -> (b f) c h w')
+ else:
+ x = layer(x,)
+ return x
+
+
+class Downsample(nn.Module):
+ """
+ A downsampling layer with an optional convolution.
+ :param channels: channels in the inputs and outputs.
+ :param use_conv: a bool determining if a convolution is applied.
+ :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
+ downsampling occurs in the inner-two dimensions.
+ """
+
+ def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
+ super().__init__()
+ self.channels = channels
+ self.out_channels = out_channels or channels
+ self.use_conv = use_conv
+ self.dims = dims
+ stride = 2 if dims != 3 else (1, 2, 2)
+ if use_conv:
+ self.op = conv_nd(
+ dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
+ )
+ else:
+ assert self.channels == self.out_channels
+ self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
+
+ def forward(self, x):
+ assert x.shape[1] == self.channels
+ return self.op(x)
+
+
+class Upsample(nn.Module):
+ """
+ An upsampling layer with an optional convolution.
+ :param channels: channels in the inputs and outputs.
+ :param use_conv: a bool determining if a convolution is applied.
+ :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
+ upsampling occurs in the inner-two dimensions.
+ """
+
+ def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
+ super().__init__()
+ self.channels = channels
+ self.out_channels = out_channels or channels
+ self.use_conv = use_conv
+ self.dims = dims
+ if use_conv:
+ self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
+
+ def forward(self, x):
+ assert x.shape[1] == self.channels
+ if self.dims == 3:
+ x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode='nearest')
+ else:
+ x = F.interpolate(x, scale_factor=2, mode='nearest')
+ if self.use_conv:
+ x = self.conv(x)
+ return x
+
+
+class ResBlock(TimestepBlock):
+ """
+ A residual block that can optionally change the number of channels.
+ :param channels: the number of input channels.
+ :param emb_channels: the number of timestep embedding channels.
+ :param dropout: the rate of dropout.
+ :param out_channels: if specified, the number of out channels.
+ :param use_conv: if True and out_channels is specified, use a spatial
+ convolution instead of a smaller 1x1 convolution to change the
+ channels in the skip connection.
+ :param dims: determines if the signal is 1D, 2D, or 3D.
+ :param up: if True, use this block for upsampling.
+ :param down: if True, use this block for downsampling.
+ :param use_temporal_conv: if True, use the temporal convolution.
+ :param use_image_dataset: if True, the temporal parameters will not be optimized.
+ """
+
+ def __init__(
+ self,
+ channels,
+ emb_channels,
+ dropout,
+ out_channels=None,
+ use_scale_shift_norm=False,
+ dims=2,
+ use_checkpoint=False,
+ use_conv=False,
+ up=False,
+ down=False,
+ use_temporal_conv=False,
+ tempspatial_aware=False,
+ use_image_dataset=False,
+ ):
+ super().__init__()
+ self.channels = channels
+ self.emb_channels = emb_channels
+ self.dropout = dropout
+ self.out_channels = out_channels or channels
+ self.use_conv = use_conv
+ self.use_checkpoint = use_checkpoint
+ self.use_scale_shift_norm = use_scale_shift_norm
+ self.use_temporal_conv = use_temporal_conv
+
+ self.in_layers = nn.Sequential(
+ normalization(channels),
+ nn.SiLU(),
+ conv_nd(dims, channels, self.out_channels, 3, padding=1),
+ )
+
+ self.updown = up or down
+
+ if up:
+ self.h_upd = Upsample(channels, False, dims)
+ self.x_upd = Upsample(channels, False, dims)
+ elif down:
+ self.h_upd = Downsample(channels, False, dims)
+ self.x_upd = Downsample(channels, False, dims)
+ else:
+ self.h_upd = self.x_upd = nn.Identity()
+
+ self.emb_layers = nn.Sequential(
+ nn.SiLU(),
+ nn.Linear(
+ emb_channels,
+ 2 * self.out_channels if use_scale_shift_norm else self.out_channels,
+ ),
+ )
+ self.out_layers = nn.Sequential(
+ normalization(self.out_channels),
+ nn.SiLU(),
+ nn.Dropout(p=dropout),
+ zero_module(nn.Conv2d(self.out_channels, self.out_channels, 3, padding=1)),
+ )
+
+ if self.out_channels == channels:
+ self.skip_connection = nn.Identity()
+ elif use_conv:
+ self.skip_connection = conv_nd(dims, channels, self.out_channels, 3, padding=1)
+ else:
+ self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
+
+ if self.use_temporal_conv:
+ self.temopral_conv = TemporalConvBlock(
+ self.out_channels,
+ self.out_channels,
+ dropout=0.1,
+ spatial_aware=tempspatial_aware,
+ use_image_dataset=use_image_dataset
+ )
+
+ def forward(self, x, emb, batch_size=None, is_imgbatch=False):
+ """
+ Apply the block to a Tensor, conditioned on a timestep embedding.
+ :param x: an [N x C x ...] Tensor of features.
+ :param emb: an [N x emb_channels] Tensor of timestep embeddings.
+ :return: an [N x C x ...] Tensor of outputs.
+ """
+ input_tuple = (x, emb)
+ if self.use_temporal_conv:
+ forward_tempconv = partial(self._forward, batch_size=batch_size, is_imgbatch=is_imgbatch)
+ return checkpoint(forward_tempconv, input_tuple, self.parameters(), self.use_checkpoint)
+ return checkpoint(self._forward, input_tuple, self.parameters(), self.use_checkpoint)
+
+ def _forward(self, x, emb, batch_size=None, is_imgbatch=False):
+ if self.updown:
+ in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
+ h = in_rest(x)
+ h = self.h_upd(h)
+ x = self.x_upd(x)
+ h = in_conv(h)
+ else:
+ h = self.in_layers(x)
+ emb_out = self.emb_layers(emb).type(h.dtype)
+ while len(emb_out.shape) < len(h.shape):
+ emb_out = emb_out[..., None]
+ if self.use_scale_shift_norm:
+ out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
+ scale, shift = torch.chunk(emb_out, 2, dim=1)
+ h = out_norm(h) * (1 + scale) + shift
+ h = out_rest(h)
+ else:
+ h = h + emb_out
+ h = self.out_layers(h)
+ h = self.skip_connection(x) + h
+
+ if self.use_temporal_conv and batch_size and not is_imgbatch:
+ h = rearrange(h, '(b t) c h w -> b c t h w', b=batch_size)
+ h = self.temopral_conv(h)
+ h = rearrange(h, 'b c t h w -> (b t) c h w')
+ return h
+
+
+class TemporalConvBlock(nn.Module):
+ def __init__(self, in_channels, out_channels=None, dropout=0.0, spatial_aware=False, use_image_dataset=False):
+ super(TemporalConvBlock, self).__init__()
+ if out_channels is None:
+ out_channels = in_channels # int(1.5*in_channels)
+ self.in_channels = in_channels
+ self.out_channels = out_channels
+ self.use_image_dataset = use_image_dataset
+ kernel_shape = (3, 1, 1) if not spatial_aware else (3, 3, 3)
+ padding_shape = (1, 0, 0) if not spatial_aware else (1, 1, 1)
+
+ # conv layers
+ self.conv1 = nn.Sequential(
+ nn.GroupNorm(32, in_channels), nn.SiLU(),
+ nn.Conv3d(in_channels, out_channels, kernel_shape, padding=padding_shape))
+ self.conv2 = nn.Sequential(
+ nn.GroupNorm(32, out_channels), nn.SiLU(), nn.Dropout(dropout),
+ nn.Conv3d(out_channels, in_channels, kernel_shape, padding=padding_shape))
+ self.conv3 = nn.Sequential(
+ nn.GroupNorm(32, out_channels), nn.SiLU(), nn.Dropout(dropout),
+ nn.Conv3d(out_channels, in_channels, (3, 1, 1), padding=(1, 0, 0)))
+ self.conv4 = nn.Sequential(
+ nn.GroupNorm(32, out_channels), nn.SiLU(), nn.Dropout(dropout),
+ nn.Conv3d(out_channels, in_channels, (3, 1, 1), padding=(1, 0, 0)))
+
+ # zero out the last layer params,so the conv block is identity
+ nn.init.zeros_(self.conv4[-1].weight)
+ nn.init.zeros_(self.conv4[-1].bias)
+
+ def forward(self, x):
+ identity = x
+ x = self.conv1(x)
+ x = self.conv2(x)
+ x = self.conv3(x)
+ x = self.conv4(x)
+
+ if self.use_image_dataset:
+ x = identity + 0.0 * x
+ else:
+ x = identity + x
+ return x
+
+
+class UNetModel(nn.Module):
+ """
+ The full UNet model with attention and timestep embedding.
+ :param in_channels: in_channels in the input Tensor.
+ :param model_channels: base channel count for the model.
+ :param out_channels: channels in the output Tensor.
+ :param num_res_blocks: number of residual blocks per downsample.
+ :param attention_resolutions: a collection of downsample rates at which
+ attention will take place. May be a set, list, or tuple.
+ For example, if this contains 4, then at 4x downsampling, attention
+ will be used.
+ :param dropout: the dropout probability.
+ :param channel_mult: channel multiplier for each level of the UNet.
+ :param conv_resample: if True, use learned convolutions for upsampling and
+ downsampling.
+ :param dims: determines if the signal is 1D, 2D, or 3D.
+ :param num_classes: if specified (as an int), then this model will be
+ class-conditional with `num_classes` classes.
+ :param use_checkpoint: use gradient checkpointing to reduce memory usage.
+ :param num_heads: the number of attention heads in each attention layer.
+ :param num_heads_channels: if specified, ignore num_heads and instead use
+ a fixed channel width per attention head.
+ :param num_heads_upsample: works with num_heads to set a different number
+ of heads for upsampling. Deprecated.
+ :param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
+ :param resblock_updown: use residual blocks for up/downsampling.
+ :param use_new_attention_order: use a different attention pattern for potentially
+ increased efficiency.
+ """
+
+ def __init__(self,
+ in_channels,
+ model_channels,
+ out_channels,
+ num_res_blocks,
+ attention_resolutions,
+ dropout=0.0,
+ channel_mult=(1, 2, 4, 8),
+ conv_resample=True,
+ dims=2,
+ context_dim=None,
+ use_scale_shift_norm=False,
+ resblock_updown=False,
+ num_heads=-1,
+ num_head_channels=-1,
+ transformer_depth=1,
+ use_linear=False,
+ use_checkpoint=False,
+ temporal_conv=False,
+ tempspatial_aware=False,
+ temporal_attention=True,
+ addition_attention=False,
+ temporal_selfatt_only=True,
+ use_relative_position=True,
+ use_causal_attention=False,
+ temporal_length=None,
+ use_image_dataset=False,
+ use_fp16=False,
+ micro_condition=False,
+ temporal_transformer_depth=1
+ ):
+ super(UNetModel, self).__init__()
+ if num_heads == -1:
+ assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
+ if num_head_channels == -1:
+ assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
+
+ self.in_channels = in_channels
+ self.model_channels = model_channels
+ self.out_channels = out_channels
+ self.num_res_blocks = num_res_blocks
+ self.attention_resolutions = attention_resolutions
+ self.dropout = dropout
+ self.channel_mult = channel_mult
+ self.conv_resample = conv_resample
+ self.temporal_attention = temporal_attention
+ time_embed_dim = model_channels * 4
+ self.use_checkpoint = use_checkpoint
+ self.dtype = torch.float16 if use_fp16 else torch.float32
+ #temporal_selfatt_only = True
+ self.addition_attention=addition_attention
+
+
+ self.time_embed = nn.Sequential(
+ linear(model_channels, time_embed_dim),
+ nn.SiLU(),
+ linear(time_embed_dim, time_embed_dim),
+ )
+ if micro_condition:
+ self.micro_embed = nn.Sequential(
+ linear(model_channels, time_embed_dim),
+ nn.SiLU(),
+ linear(time_embed_dim, time_embed_dim),
+ )
+ self.micro_condition = micro_condition
+
+ self.input_blocks = nn.ModuleList(
+ [
+ TimestepEmbedSequential(conv_nd(dims, in_channels, model_channels, 3, padding=1))
+ ]
+ )
+ if self.addition_attention:
+ self.init_attn=TimestepEmbedSequential(
+ TemporalTransformer(
+ model_channels,
+ n_heads=8,
+ d_head=num_head_channels,
+ depth=transformer_depth,
+ context_dim=context_dim,
+ use_checkpoint=use_checkpoint, only_self_att=temporal_selfatt_only,
+ causal_attention=use_causal_attention, relative_position=use_relative_position,
+ temporal_length=temporal_length, use_image_dataset=use_image_dataset))
+
+ input_block_chans = [model_channels]
+ ch = model_channels
+ ds = 1
+ for level, mult in enumerate(channel_mult):
+ for _ in range(num_res_blocks):
+ layers = [
+ ResBlock(ch, time_embed_dim, dropout,
+ out_channels=mult * model_channels, dims=dims, use_checkpoint=use_checkpoint,
+ use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware,
+ use_temporal_conv=temporal_conv, use_image_dataset=use_image_dataset
+ )
+ ]
+ ch = mult * model_channels
+ if ds in attention_resolutions:
+ if num_head_channels == -1:
+ dim_head = ch // num_heads
+ else:
+ num_heads = ch // num_head_channels
+ dim_head = num_head_channels
+ layers.append(
+ SpatialTransformer(ch, num_heads, dim_head,
+ depth=transformer_depth, context_dim=context_dim, use_linear=use_linear,
+ use_checkpoint=use_checkpoint, disable_self_attn=False
+ )
+ )
+ if self.temporal_attention:
+ layers.append(
+ TemporalTransformer(ch, num_heads, dim_head,
+ depth=temporal_transformer_depth, context_dim=context_dim, use_linear=use_linear,
+ use_checkpoint=use_checkpoint, only_self_att=temporal_selfatt_only,
+ causal_attention=use_causal_attention, relative_position=use_relative_position,
+ temporal_length=temporal_length, use_image_dataset=use_image_dataset
+ )
+ )
+ self.input_blocks.append(TimestepEmbedSequential(*layers))
+ input_block_chans.append(ch)
+ if level != len(channel_mult) - 1:
+ out_ch = ch
+ self.input_blocks.append(
+ TimestepEmbedSequential(
+ ResBlock(ch, time_embed_dim, dropout,
+ out_channels=out_ch, dims=dims, use_checkpoint=use_checkpoint,
+ use_scale_shift_norm=use_scale_shift_norm,
+ down=True
+ )
+ if resblock_updown
+ else Downsample(ch, conv_resample, dims=dims, out_channels=out_ch)
+ )
+ )
+ ch = out_ch
+ input_block_chans.append(ch)
+ ds *= 2
+
+ if num_head_channels == -1:
+ dim_head = ch // num_heads
+ else:
+ num_heads = ch // num_head_channels
+ dim_head = num_head_channels
+ layers = [
+ ResBlock(ch, time_embed_dim, dropout,
+ dims=dims, use_checkpoint=use_checkpoint,
+ use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware,
+ use_temporal_conv=temporal_conv, use_image_dataset=use_image_dataset
+ ),
+ SpatialTransformer(ch, num_heads, dim_head,
+ depth=transformer_depth, context_dim=context_dim, use_linear=use_linear,
+ use_checkpoint=use_checkpoint, disable_self_attn=False
+ )
+ ]
+ if self.temporal_attention:
+ layers.append(
+ TemporalTransformer(ch, num_heads, dim_head,
+ depth=temporal_transformer_depth, context_dim=context_dim, use_linear=use_linear,
+ use_checkpoint=use_checkpoint, only_self_att=temporal_selfatt_only,
+ causal_attention=use_causal_attention, relative_position=use_relative_position,
+ temporal_length=temporal_length, use_image_dataset=use_image_dataset
+ )
+ )
+ layers.append(
+ ResBlock(ch, time_embed_dim, dropout,
+ dims=dims, use_checkpoint=use_checkpoint,
+ use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware,
+ use_temporal_conv=temporal_conv, use_image_dataset=use_image_dataset
+ )
+ )
+ self.middle_block = TimestepEmbedSequential(*layers)
+
+ self.output_blocks = nn.ModuleList([])
+ for level, mult in list(enumerate(channel_mult))[::-1]:
+ for i in range(num_res_blocks + 1):
+ ich = input_block_chans.pop()
+ layers = [
+ ResBlock(ch + ich, time_embed_dim, dropout,
+ out_channels=mult * model_channels, dims=dims, use_checkpoint=use_checkpoint,
+ use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware,
+ use_temporal_conv=temporal_conv, use_image_dataset=use_image_dataset
+ )
+ ]
+ ch = model_channels * mult
+ if ds in attention_resolutions:
+ if num_head_channels == -1:
+ dim_head = ch // num_heads
+ else:
+ num_heads = ch // num_head_channels
+ dim_head = num_head_channels
+ layers.append(
+ SpatialTransformer(ch, num_heads, dim_head,
+ depth=transformer_depth, context_dim=context_dim, use_linear=use_linear,
+ use_checkpoint=use_checkpoint, disable_self_attn=False
+ )
+ )
+ if self.temporal_attention:
+ layers.append(
+ TemporalTransformer(ch, num_heads, dim_head,
+ depth=temporal_transformer_depth, context_dim=context_dim, use_linear=use_linear,
+ use_checkpoint=use_checkpoint, only_self_att=temporal_selfatt_only,
+ causal_attention=use_causal_attention, relative_position=use_relative_position,
+ temporal_length=temporal_length, use_image_dataset=use_image_dataset
+ )
+ )
+ if level and i == num_res_blocks:
+ out_ch = ch
+ layers.append(
+ ResBlock(ch, time_embed_dim, dropout,
+ out_channels=out_ch, dims=dims, use_checkpoint=use_checkpoint,
+ use_scale_shift_norm=use_scale_shift_norm,
+ up=True
+ )
+ if resblock_updown
+ else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
+ )
+ ds //= 2
+ self.output_blocks.append(TimestepEmbedSequential(*layers))
+
+ self.out = nn.Sequential(
+ normalization(ch),
+ nn.SiLU(),
+ zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
+ )
+
+ def forward(self, x, timesteps, context=None, y=None, features_adapter=None, is_imgbatch=False, **kwargs):
+ b,_,t,_,_ = x.shape
+
+ t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
+ emb = self.time_embed(t_emb)
+ if self.micro_condition and y is not None:
+ micro_emb = timestep_embedding(y, self.model_channels, repeat_only=False)
+ emb = emb + self.micro_embed(micro_emb)
+
+ ## repeat t times for context [(b t) 77 768] & time embedding
+ if not is_imgbatch:
+ context = context.repeat_interleave(repeats=t, dim=0)
+ emb = emb.repeat_interleave(repeats=t, dim=0)
+
+ ## always in shape (b t) c h w, except for temporal layer
+ x = rearrange(x, 'b c t h w -> (b t) c h w')
+ if features_adapter is not None:
+ features_adapter = [rearrange(feature, 'b c t h w -> (b t) c h w') for feature in features_adapter]
+
+ h = x.type(self.dtype)
+ adapter_idx = 0
+ hs = []
+ for id, module in enumerate(self.input_blocks):
+ h = module(h, emb, context=context, batch_size=b,is_imgbatch=is_imgbatch)
+ if id ==0 and self.addition_attention:
+ h = self.init_attn(h, emb, context=context, batch_size=b,is_imgbatch=is_imgbatch)
+ ## plug-in adapter features
+ if ((id+1)%3 == 0) and features_adapter is not None:
+ h = h + features_adapter[adapter_idx]
+ adapter_idx += 1
+ hs.append(h)
+ if features_adapter is not None:
+ assert len(features_adapter)==adapter_idx, 'Wrong features_adapter'
+
+ h = self.middle_block(h, emb, context=context, batch_size=b, is_imgbatch=is_imgbatch)
+ for module in self.output_blocks:
+ h = torch.cat([h, hs.pop()], dim=1)
+ h = module(h, emb, context=context, batch_size=b, is_imgbatch=is_imgbatch)
+ h = h.type(x.dtype)
+ y = self.out(h)
+
+ # reshape back to (b c t h w)
+ y = rearrange(y, '(b t) c h w -> b c t h w', b=b)
+ return y
diff --git a/lvdm/modules/x_transformer.py b/lvdm/modules/x_transformer.py
new file mode 100644
index 0000000000000000000000000000000000000000..396344a7d4f353c523dac43e74f2a50efbf68b8e
--- /dev/null
+++ b/lvdm/modules/x_transformer.py
@@ -0,0 +1,641 @@
+"""shout-out to https://github.com/lucidrains/x-transformers/tree/main/x_transformers"""
+from functools import partial
+from inspect import isfunction
+from collections import namedtuple
+from einops import rearrange, repeat
+
+import torch
+from torch import nn, einsum
+import torch.nn.functional as F
+
+# constants
+DEFAULT_DIM_HEAD = 64
+
+Intermediates = namedtuple('Intermediates', [
+ 'pre_softmax_attn',
+ 'post_softmax_attn'
+])
+
+LayerIntermediates = namedtuple('Intermediates', [
+ 'hiddens',
+ 'attn_intermediates'
+])
+
+
+class AbsolutePositionalEmbedding(nn.Module):
+ def __init__(self, dim, max_seq_len):
+ super().__init__()
+ self.emb = nn.Embedding(max_seq_len, dim)
+ self.init_()
+
+ def init_(self):
+ nn.init.normal_(self.emb.weight, std=0.02)
+
+ def forward(self, x):
+ n = torch.arange(x.shape[1], device=x.device)
+ return self.emb(n)[None, :, :]
+
+
+class FixedPositionalEmbedding(nn.Module):
+ def __init__(self, dim):
+ super().__init__()
+ inv_freq = 1. / (10000 ** (torch.arange(0, dim, 2).float() / dim))
+ self.register_buffer('inv_freq', inv_freq)
+
+ def forward(self, x, seq_dim=1, offset=0):
+ t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq) + offset
+ sinusoid_inp = torch.einsum('i , j -> i j', t, self.inv_freq)
+ emb = torch.cat((sinusoid_inp.sin(), sinusoid_inp.cos()), dim=-1)
+ return emb[None, :, :]
+
+
+# helpers
+
+def exists(val):
+ return val is not None
+
+
+def default(val, d):
+ if exists(val):
+ return val
+ return d() if isfunction(d) else d
+
+
+def always(val):
+ def inner(*args, **kwargs):
+ return val
+ return inner
+
+
+def not_equals(val):
+ def inner(x):
+ return x != val
+ return inner
+
+
+def equals(val):
+ def inner(x):
+ return x == val
+ return inner
+
+
+def max_neg_value(tensor):
+ return -torch.finfo(tensor.dtype).max
+
+
+# keyword argument helpers
+
+def pick_and_pop(keys, d):
+ values = list(map(lambda key: d.pop(key), keys))
+ return dict(zip(keys, values))
+
+
+def group_dict_by_key(cond, d):
+ return_val = [dict(), dict()]
+ for key in d.keys():
+ match = bool(cond(key))
+ ind = int(not match)
+ return_val[ind][key] = d[key]
+ return (*return_val,)
+
+
+def string_begins_with(prefix, str):
+ return str.startswith(prefix)
+
+
+def group_by_key_prefix(prefix, d):
+ return group_dict_by_key(partial(string_begins_with, prefix), d)
+
+
+def groupby_prefix_and_trim(prefix, d):
+ kwargs_with_prefix, kwargs = group_dict_by_key(partial(string_begins_with, prefix), d)
+ kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items())))
+ return kwargs_without_prefix, kwargs
+
+
+# classes
+class Scale(nn.Module):
+ def __init__(self, value, fn):
+ super().__init__()
+ self.value = value
+ self.fn = fn
+
+ def forward(self, x, **kwargs):
+ x, *rest = self.fn(x, **kwargs)
+ return (x * self.value, *rest)
+
+
+class Rezero(nn.Module):
+ def __init__(self, fn):
+ super().__init__()
+ self.fn = fn
+ self.g = nn.Parameter(torch.zeros(1))
+
+ def forward(self, x, **kwargs):
+ x, *rest = self.fn(x, **kwargs)
+ return (x * self.g, *rest)
+
+
+class ScaleNorm(nn.Module):
+ def __init__(self, dim, eps=1e-5):
+ super().__init__()
+ self.scale = dim ** -0.5
+ self.eps = eps
+ self.g = nn.Parameter(torch.ones(1))
+
+ def forward(self, x):
+ norm = torch.norm(x, dim=-1, keepdim=True) * self.scale
+ return x / norm.clamp(min=self.eps) * self.g
+
+
+class RMSNorm(nn.Module):
+ def __init__(self, dim, eps=1e-8):
+ super().__init__()
+ self.scale = dim ** -0.5
+ self.eps = eps
+ self.g = nn.Parameter(torch.ones(dim))
+
+ def forward(self, x):
+ norm = torch.norm(x, dim=-1, keepdim=True) * self.scale
+ return x / norm.clamp(min=self.eps) * self.g
+
+
+class Residual(nn.Module):
+ def forward(self, x, residual):
+ return x + residual
+
+
+class GRUGating(nn.Module):
+ def __init__(self, dim):
+ super().__init__()
+ self.gru = nn.GRUCell(dim, dim)
+
+ def forward(self, x, residual):
+ gated_output = self.gru(
+ rearrange(x, 'b n d -> (b n) d'),
+ rearrange(residual, 'b n d -> (b n) d')
+ )
+
+ return gated_output.reshape_as(x)
+
+
+# feedforward
+
+class GEGLU(nn.Module):
+ def __init__(self, dim_in, dim_out):
+ super().__init__()
+ self.proj = nn.Linear(dim_in, dim_out * 2)
+
+ def forward(self, x):
+ x, gate = self.proj(x).chunk(2, dim=-1)
+ return x * F.gelu(gate)
+
+
+class FeedForward(nn.Module):
+ def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
+ super().__init__()
+ inner_dim = int(dim * mult)
+ dim_out = default(dim_out, dim)
+ project_in = nn.Sequential(
+ nn.Linear(dim, inner_dim),
+ nn.GELU()
+ ) if not glu else GEGLU(dim, inner_dim)
+
+ self.net = nn.Sequential(
+ project_in,
+ nn.Dropout(dropout),
+ nn.Linear(inner_dim, dim_out)
+ )
+
+ def forward(self, x):
+ return self.net(x)
+
+
+# attention.
+class Attention(nn.Module):
+ def __init__(
+ self,
+ dim,
+ dim_head=DEFAULT_DIM_HEAD,
+ heads=8,
+ causal=False,
+ mask=None,
+ talking_heads=False,
+ sparse_topk=None,
+ use_entmax15=False,
+ num_mem_kv=0,
+ dropout=0.,
+ on_attn=False
+ ):
+ super().__init__()
+ if use_entmax15:
+ raise NotImplementedError("Check out entmax activation instead of softmax activation!")
+ self.scale = dim_head ** -0.5
+ self.heads = heads
+ self.causal = causal
+ self.mask = mask
+
+ inner_dim = dim_head * heads
+
+ self.to_q = nn.Linear(dim, inner_dim, bias=False)
+ self.to_k = nn.Linear(dim, inner_dim, bias=False)
+ self.to_v = nn.Linear(dim, inner_dim, bias=False)
+ self.dropout = nn.Dropout(dropout)
+
+ # talking heads
+ self.talking_heads = talking_heads
+ if talking_heads:
+ self.pre_softmax_proj = nn.Parameter(torch.randn(heads, heads))
+ self.post_softmax_proj = nn.Parameter(torch.randn(heads, heads))
+
+ # explicit topk sparse attention
+ self.sparse_topk = sparse_topk
+
+ # entmax
+ #self.attn_fn = entmax15 if use_entmax15 else F.softmax
+ self.attn_fn = F.softmax
+
+ # add memory key / values
+ self.num_mem_kv = num_mem_kv
+ if num_mem_kv > 0:
+ self.mem_k = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))
+ self.mem_v = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))
+
+ # attention on attention
+ self.attn_on_attn = on_attn
+ self.to_out = nn.Sequential(nn.Linear(inner_dim, dim * 2), nn.GLU()) if on_attn else nn.Linear(inner_dim, dim)
+
+ def forward(
+ self,
+ x,
+ context=None,
+ mask=None,
+ context_mask=None,
+ rel_pos=None,
+ sinusoidal_emb=None,
+ prev_attn=None,
+ mem=None
+ ):
+ b, n, _, h, talking_heads, device = *x.shape, self.heads, self.talking_heads, x.device
+ kv_input = default(context, x)
+
+ q_input = x
+ k_input = kv_input
+ v_input = kv_input
+
+ if exists(mem):
+ k_input = torch.cat((mem, k_input), dim=-2)
+ v_input = torch.cat((mem, v_input), dim=-2)
+
+ if exists(sinusoidal_emb):
+ # in shortformer, the query would start at a position offset depending on the past cached memory
+ offset = k_input.shape[-2] - q_input.shape[-2]
+ q_input = q_input + sinusoidal_emb(q_input, offset=offset)
+ k_input = k_input + sinusoidal_emb(k_input)
+
+ q = self.to_q(q_input)
+ k = self.to_k(k_input)
+ v = self.to_v(v_input)
+
+ q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), (q, k, v))
+
+ input_mask = None
+ if any(map(exists, (mask, context_mask))):
+ q_mask = default(mask, lambda: torch.ones((b, n), device=device).bool())
+ k_mask = q_mask if not exists(context) else context_mask
+ k_mask = default(k_mask, lambda: torch.ones((b, k.shape[-2]), device=device).bool())
+ q_mask = rearrange(q_mask, 'b i -> b () i ()')
+ k_mask = rearrange(k_mask, 'b j -> b () () j')
+ input_mask = q_mask * k_mask
+
+ if self.num_mem_kv > 0:
+ mem_k, mem_v = map(lambda t: repeat(t, 'h n d -> b h n d', b=b), (self.mem_k, self.mem_v))
+ k = torch.cat((mem_k, k), dim=-2)
+ v = torch.cat((mem_v, v), dim=-2)
+ if exists(input_mask):
+ input_mask = F.pad(input_mask, (self.num_mem_kv, 0), value=True)
+
+ dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
+ mask_value = max_neg_value(dots)
+
+ if exists(prev_attn):
+ dots = dots + prev_attn
+
+ pre_softmax_attn = dots
+
+ if talking_heads:
+ dots = einsum('b h i j, h k -> b k i j', dots, self.pre_softmax_proj).contiguous()
+
+ if exists(rel_pos):
+ dots = rel_pos(dots)
+
+ if exists(input_mask):
+ dots.masked_fill_(~input_mask, mask_value)
+ del input_mask
+
+ if self.causal:
+ i, j = dots.shape[-2:]
+ r = torch.arange(i, device=device)
+ mask = rearrange(r, 'i -> () () i ()') < rearrange(r, 'j -> () () () j')
+ mask = F.pad(mask, (j - i, 0), value=False)
+ dots.masked_fill_(mask, mask_value)
+ del mask
+
+ if exists(self.sparse_topk) and self.sparse_topk < dots.shape[-1]:
+ top, _ = dots.topk(self.sparse_topk, dim=-1)
+ vk = top[..., -1].unsqueeze(-1).expand_as(dots)
+ mask = dots < vk
+ dots.masked_fill_(mask, mask_value)
+ del mask
+
+ attn = self.attn_fn(dots, dim=-1)
+ post_softmax_attn = attn
+
+ attn = self.dropout(attn)
+
+ if talking_heads:
+ attn = einsum('b h i j, h k -> b k i j', attn, self.post_softmax_proj).contiguous()
+
+ out = einsum('b h i j, b h j d -> b h i d', attn, v)
+ out = rearrange(out, 'b h n d -> b n (h d)')
+
+ intermediates = Intermediates(
+ pre_softmax_attn=pre_softmax_attn,
+ post_softmax_attn=post_softmax_attn
+ )
+
+ return self.to_out(out), intermediates
+
+
+class AttentionLayers(nn.Module):
+ def __init__(
+ self,
+ dim,
+ depth,
+ heads=8,
+ causal=False,
+ cross_attend=False,
+ only_cross=False,
+ use_scalenorm=False,
+ use_rmsnorm=False,
+ use_rezero=False,
+ rel_pos_num_buckets=32,
+ rel_pos_max_distance=128,
+ position_infused_attn=False,
+ custom_layers=None,
+ sandwich_coef=None,
+ par_ratio=None,
+ residual_attn=False,
+ cross_residual_attn=False,
+ macaron=False,
+ pre_norm=True,
+ gate_residual=False,
+ **kwargs
+ ):
+ super().__init__()
+ ff_kwargs, kwargs = groupby_prefix_and_trim('ff_', kwargs)
+ attn_kwargs, _ = groupby_prefix_and_trim('attn_', kwargs)
+
+ dim_head = attn_kwargs.get('dim_head', DEFAULT_DIM_HEAD)
+
+ self.dim = dim
+ self.depth = depth
+ self.layers = nn.ModuleList([])
+
+ self.has_pos_emb = position_infused_attn
+ self.pia_pos_emb = FixedPositionalEmbedding(dim) if position_infused_attn else None
+ self.rotary_pos_emb = always(None)
+
+ assert rel_pos_num_buckets <= rel_pos_max_distance, 'number of relative position buckets must be less than the relative position max distance'
+ self.rel_pos = None
+
+ self.pre_norm = pre_norm
+
+ self.residual_attn = residual_attn
+ self.cross_residual_attn = cross_residual_attn
+
+ norm_class = ScaleNorm if use_scalenorm else nn.LayerNorm
+ norm_class = RMSNorm if use_rmsnorm else norm_class
+ norm_fn = partial(norm_class, dim)
+
+ norm_fn = nn.Identity if use_rezero else norm_fn
+ branch_fn = Rezero if use_rezero else None
+
+ if cross_attend and not only_cross:
+ default_block = ('a', 'c', 'f')
+ elif cross_attend and only_cross:
+ default_block = ('c', 'f')
+ else:
+ default_block = ('a', 'f')
+
+ if macaron:
+ default_block = ('f',) + default_block
+
+ if exists(custom_layers):
+ layer_types = custom_layers
+ elif exists(par_ratio):
+ par_depth = depth * len(default_block)
+ assert 1 < par_ratio <= par_depth, 'par ratio out of range'
+ default_block = tuple(filter(not_equals('f'), default_block))
+ par_attn = par_depth // par_ratio
+ depth_cut = par_depth * 2 // 3 # 2 / 3 attention layer cutoff suggested by PAR paper
+ par_width = (depth_cut + depth_cut // par_attn) // par_attn
+ assert len(default_block) <= par_width, 'default block is too large for par_ratio'
+ par_block = default_block + ('f',) * (par_width - len(default_block))
+ par_head = par_block * par_attn
+ layer_types = par_head + ('f',) * (par_depth - len(par_head))
+ elif exists(sandwich_coef):
+ assert sandwich_coef > 0 and sandwich_coef <= depth, 'sandwich coefficient should be less than the depth'
+ layer_types = ('a',) * sandwich_coef + default_block * (depth - sandwich_coef) + ('f',) * sandwich_coef
+ else:
+ layer_types = default_block * depth
+
+ self.layer_types = layer_types
+ self.num_attn_layers = len(list(filter(equals('a'), layer_types)))
+
+ for layer_type in self.layer_types:
+ if layer_type == 'a':
+ layer = Attention(dim, heads=heads, causal=causal, **attn_kwargs)
+ elif layer_type == 'c':
+ layer = Attention(dim, heads=heads, **attn_kwargs)
+ elif layer_type == 'f':
+ layer = FeedForward(dim, **ff_kwargs)
+ layer = layer if not macaron else Scale(0.5, layer)
+ else:
+ raise Exception(f'invalid layer type {layer_type}')
+
+ if isinstance(layer, Attention) and exists(branch_fn):
+ layer = branch_fn(layer)
+
+ if gate_residual:
+ residual_fn = GRUGating(dim)
+ else:
+ residual_fn = Residual()
+
+ self.layers.append(nn.ModuleList([
+ norm_fn(),
+ layer,
+ residual_fn
+ ]))
+
+ def forward(
+ self,
+ x,
+ context=None,
+ mask=None,
+ context_mask=None,
+ mems=None,
+ return_hiddens=False
+ ):
+ hiddens = []
+ intermediates = []
+ prev_attn = None
+ prev_cross_attn = None
+
+ mems = mems.copy() if exists(mems) else [None] * self.num_attn_layers
+
+ for ind, (layer_type, (norm, block, residual_fn)) in enumerate(zip(self.layer_types, self.layers)):
+ is_last = ind == (len(self.layers) - 1)
+
+ if layer_type == 'a':
+ hiddens.append(x)
+ layer_mem = mems.pop(0)
+
+ residual = x
+
+ if self.pre_norm:
+ x = norm(x)
+
+ if layer_type == 'a':
+ out, inter = block(x, mask=mask, sinusoidal_emb=self.pia_pos_emb, rel_pos=self.rel_pos,
+ prev_attn=prev_attn, mem=layer_mem)
+ elif layer_type == 'c':
+ out, inter = block(x, context=context, mask=mask, context_mask=context_mask, prev_attn=prev_cross_attn)
+ elif layer_type == 'f':
+ out = block(x)
+
+ x = residual_fn(out, residual)
+
+ if layer_type in ('a', 'c'):
+ intermediates.append(inter)
+
+ if layer_type == 'a' and self.residual_attn:
+ prev_attn = inter.pre_softmax_attn
+ elif layer_type == 'c' and self.cross_residual_attn:
+ prev_cross_attn = inter.pre_softmax_attn
+
+ if not self.pre_norm and not is_last:
+ x = norm(x)
+
+ if return_hiddens:
+ intermediates = LayerIntermediates(
+ hiddens=hiddens,
+ attn_intermediates=intermediates
+ )
+
+ return x, intermediates
+
+ return x
+
+
+class Encoder(AttentionLayers):
+ def __init__(self, **kwargs):
+ assert 'causal' not in kwargs, 'cannot set causality on encoder'
+ super().__init__(causal=False, **kwargs)
+
+
+
+class TransformerWrapper(nn.Module):
+ def __init__(
+ self,
+ *,
+ num_tokens,
+ max_seq_len,
+ attn_layers,
+ emb_dim=None,
+ max_mem_len=0.,
+ emb_dropout=0.,
+ num_memory_tokens=None,
+ tie_embedding=False,
+ use_pos_emb=True
+ ):
+ super().__init__()
+ assert isinstance(attn_layers, AttentionLayers), 'attention layers must be one of Encoder or Decoder'
+
+ dim = attn_layers.dim
+ emb_dim = default(emb_dim, dim)
+
+ self.max_seq_len = max_seq_len
+ self.max_mem_len = max_mem_len
+ self.num_tokens = num_tokens
+
+ self.token_emb = nn.Embedding(num_tokens, emb_dim)
+ self.pos_emb = AbsolutePositionalEmbedding(emb_dim, max_seq_len) if (
+ use_pos_emb and not attn_layers.has_pos_emb) else always(0)
+ self.emb_dropout = nn.Dropout(emb_dropout)
+
+ self.project_emb = nn.Linear(emb_dim, dim) if emb_dim != dim else nn.Identity()
+ self.attn_layers = attn_layers
+ self.norm = nn.LayerNorm(dim)
+
+ self.init_()
+
+ self.to_logits = nn.Linear(dim, num_tokens) if not tie_embedding else lambda t: t @ self.token_emb.weight.t()
+
+ # memory tokens (like [cls]) from Memory Transformers paper
+ num_memory_tokens = default(num_memory_tokens, 0)
+ self.num_memory_tokens = num_memory_tokens
+ if num_memory_tokens > 0:
+ self.memory_tokens = nn.Parameter(torch.randn(num_memory_tokens, dim))
+
+ # let funnel encoder know number of memory tokens, if specified
+ if hasattr(attn_layers, 'num_memory_tokens'):
+ attn_layers.num_memory_tokens = num_memory_tokens
+
+ def init_(self):
+ nn.init.normal_(self.token_emb.weight, std=0.02)
+
+ def forward(
+ self,
+ x,
+ return_embeddings=False,
+ mask=None,
+ return_mems=False,
+ return_attn=False,
+ mems=None,
+ **kwargs
+ ):
+ b, n, device, num_mem = *x.shape, x.device, self.num_memory_tokens
+ x = self.token_emb(x)
+ x += self.pos_emb(x)
+ x = self.emb_dropout(x)
+
+ x = self.project_emb(x)
+
+ if num_mem > 0:
+ mem = repeat(self.memory_tokens, 'n d -> b n d', b=b)
+ x = torch.cat((mem, x), dim=1)
+
+ # auto-handle masking after appending memory tokens
+ if exists(mask):
+ mask = F.pad(mask, (num_mem, 0), value=True)
+
+ x, intermediates = self.attn_layers(x, mask=mask, mems=mems, return_hiddens=True, **kwargs)
+ x = self.norm(x)
+
+ mem, x = x[:, :num_mem], x[:, num_mem:]
+
+ out = self.to_logits(x) if not return_embeddings else x
+
+ if return_mems:
+ hiddens = intermediates.hiddens
+ new_mems = list(map(lambda pair: torch.cat(pair, dim=-2), zip(mems, hiddens))) if exists(mems) else hiddens
+ new_mems = list(map(lambda t: t[..., -self.max_mem_len:, :].detach(), new_mems))
+ return out, new_mems
+
+ if return_attn:
+ attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates))
+ return out, attn_maps
+
+ return out
+
diff --git a/main/evaluation/motionctrl_inference.py b/main/evaluation/motionctrl_inference.py
new file mode 100644
index 0000000000000000000000000000000000000000..b37e4b0b585a13a5dfd5151515114c5110ea6854
--- /dev/null
+++ b/main/evaluation/motionctrl_inference.py
@@ -0,0 +1,353 @@
+import argparse
+import datetime
+import glob
+import json
+import math
+import os
+import sys
+import time
+from collections import OrderedDict
+
+import cv2
+import numpy as np
+import torch
+import torchvision
+## note: decord should be imported after torch
+from omegaconf import OmegaConf
+from pytorch_lightning import seed_everything
+from tqdm import tqdm
+
+sys.path.insert(1, os.path.join(sys.path[0], '..', '..'))
+from lvdm.models.samplers.ddim import DDIMSampler
+from main.evaluation.motionctrl_prompts_camerapose_trajs import (
+ both_prompt_camerapose_traj, cmcm_prompt_camerapose, omom_prompt_traj)
+from utils.utils import instantiate_from_config
+
+DEFAULT_NEGATIVE_PROMPT = 'blur, haze, deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, '\
+ 'sketch, cartoon, drawing, anime, mutated hands and fingers, deformed, distorted, '\
+ 'disfigured, poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, '\
+ 'floating limbs, disconnected limbs, mutation, mutated, ugly, disgusting, amputation'
+
+post_prompt = 'Ultra-detail, masterpiece, best quality, cinematic lighting, 8k uhd, dslr, soft lighting, film grain, Fujifilm XT3'
+
+
+def load_model_checkpoint(model, ckpt, adapter_ckpt=None):
+ if adapter_ckpt:
+ ## main model
+ state_dict = torch.load(ckpt, map_location="cpu")
+ if "state_dict" in list(state_dict.keys()):
+ state_dict = state_dict["state_dict"]
+ result = model.load_state_dict(state_dict, strict=False)
+ else:
+ # deepspeed
+ new_pl_sd = OrderedDict()
+ for key in state_dict['module'].keys():
+ new_pl_sd[key[16:]]=state_dict['module'][key]
+ result = model.load_state_dict(new_pl_sd, strict=False)
+ print(result)
+ print('>>> model checkpoint loaded.')
+ ## adapter
+ state_dict = torch.load(adapter_ckpt, map_location="cpu")
+ if "state_dict" in list(state_dict.keys()):
+ state_dict = state_dict["state_dict"]
+ model.adapter.load_state_dict(state_dict, strict=True)
+ print('>>> adapter checkpoint loaded.')
+ else:
+ state_dict = torch.load(ckpt, map_location="cpu")
+ if "state_dict" in list(state_dict.keys()):
+ state_dict = state_dict["state_dict"]
+ model.load_state_dict(state_dict, strict=False)
+ else:
+ # deepspeed
+ new_pl_sd = OrderedDict()
+ for key in state_dict['module'].keys():
+ new_pl_sd[key[16:]]=state_dict['module'][key]
+ model.load_state_dict(new_pl_sd)
+
+ print('>>> model checkpoint loaded.')
+ return model
+
+def load_trajs(cond_dir, trajs):
+ traj_files = [f'{cond_dir}/trajectories/{traj}.npy' for traj in trajs]
+
+ data_list = []
+ traj_name = []
+
+ for idx in range(len(traj_files)):
+ traj_name.append(traj_files[idx].split('/')[-1].split('.')[0])
+ data_list.append(torch.tensor(np.load(traj_files[idx])).permute(3, 0, 1, 2).float()) # [t,h,w,c] -> [c,t,h,w]
+
+ return data_list, traj_name
+
+def load_camera_pose(cond_dir, camera_poses):
+
+ pose_file = [f'{cond_dir}/camera_poses/{pose}.json' for pose in camera_poses]
+ pose_sample_num = len(pose_file)
+
+ data_list = []
+ pose_name = []
+
+ for idx in range(pose_sample_num):
+ cur_pose_name = camera_poses[idx].replace('test_camera_', '')
+ pose_name.append(cur_pose_name)
+
+ with open(pose_file[idx], 'r') as f:
+ pose = json.load(f)
+ pose = np.array(pose) # [t, 12]
+ pose = torch.tensor(pose).float() # [t, 12]
+ data_list.append(pose)
+
+ return data_list, pose_name
+
+def save_results(samples, filename, savedir, fps=10):
+ ## save prompt
+
+ ## save video
+ videos = [samples]
+ savedirs = [savedir]
+ for idx, video in enumerate(videos):
+ if video is None:
+ continue
+ # b,c,t,h,w
+ video = video.detach().cpu()
+ video = torch.clamp(video.float(), -1., 1.)
+ n = video.shape[0]
+ video = video.permute(2, 0, 1, 3, 4) # t,n,c,h,w
+ frame_grids = [torchvision.utils.make_grid(framesheet, nrow=int(n)) for framesheet in video] #[3, 1*h, n*w]
+ grid = torch.stack(frame_grids, dim=0) # stack in temporal dim [t, 3, n*h, w]
+ grid = (grid + 1.0) / 2.0
+ grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1)
+ path = os.path.join(savedirs[idx], "%s.mp4"%filename)
+ torchvision.io.write_video(path, grid, fps=fps, video_codec='h264', options={'crf': '10'})
+
+def motionctrl_sample(
+ model,
+ prompts,
+ noise_shape,
+ camera_poses=None,
+ trajs=None,
+ n_samples=1,
+ unconditional_guidance_scale=1.0,
+ unconditional_guidance_scale_temporal=None,
+ ddim_steps=50,
+ ddim_eta=1.,
+ **kwargs):
+
+ ddim_sampler = DDIMSampler(model)
+ batch_size = noise_shape[0]
+ ## get condition embeddings (support single prompt only)
+ if isinstance(prompts, str):
+ prompts = [prompts]
+
+ for i in range(len(prompts)):
+ prompts[i] = f'{prompts[i]}, {post_prompt}'
+
+ cond = model.get_learned_conditioning(prompts)
+ if camera_poses is not None:
+ RT = camera_poses[..., None]
+ else:
+ RT = None
+
+ if trajs is not None:
+ traj_features = model.get_traj_features(trajs)
+ else:
+ traj_features = None
+
+ if unconditional_guidance_scale != 1.0:
+ # prompts = batch_size * [""]
+ prompts = batch_size * [DEFAULT_NEGATIVE_PROMPT]
+ uc = model.get_learned_conditioning(prompts)
+ if traj_features is not None:
+ un_motion = model.get_traj_features(torch.zeros_like(trajs))
+ else:
+ un_motion = None
+ uc = {"features_adapter": un_motion, "uc": uc}
+ else:
+ uc = None
+
+ batch_variants = []
+ for _ in range(n_samples):
+ if ddim_sampler is not None:
+ samples, _ = ddim_sampler.sample(S=ddim_steps,
+ conditioning=cond,
+ batch_size=noise_shape[0],
+ shape=noise_shape[1:],
+ verbose=False,
+ unconditional_guidance_scale=unconditional_guidance_scale,
+ unconditional_conditioning=uc,
+ eta=ddim_eta,
+ temporal_length=noise_shape[2],
+ conditional_guidance_scale_temporal=unconditional_guidance_scale_temporal,
+ features_adapter=traj_features,
+ pose_emb=RT,
+ **kwargs
+ )
+ ## reconstruct from latent to pixel space
+ batch_images = model.decode_first_stage(samples)
+ batch_variants.append(batch_images)
+ ## variants, batch, c, t, h, w
+ batch_variants = torch.stack(batch_variants)
+ return batch_variants.permute(1, 0, 2, 3, 4, 5)
+
+def run_inference(args, gpu_num, gpu_no):
+ ## model config
+ config = OmegaConf.load(args.base)
+ model_config = config.pop("model", OmegaConf.create())
+ model = instantiate_from_config(model_config)
+ model = model.cuda(gpu_no)
+ assert os.path.exists(args.ckpt_path), f"Error: checkpoint {args.ckpt_path} Not Found!"
+ print(f"Loading checkpoint from {args.ckpt_path}")
+ model = load_model_checkpoint(model, args.ckpt_path, args.adapter_ckpt)
+ model.eval()
+
+ ## run over data
+ assert (args.height % 16 == 0) and (args.width % 16 == 0), "Error: image size [h,w] should be multiples of 16!"
+
+ ## latent noise shape
+ h, w = args.height // 8, args.width // 8
+ channels = model.channels
+ frames = model.temporal_length
+ noise_shape = [args.bs, channels, frames, h, w]
+
+ savedir = os.path.join(args.savedir, "samples")
+ os.makedirs(savedir, exist_ok=True)
+
+ if args.condtype == 'camera_motion':
+ prompt_list = cmcm_prompt_camerapose['prompts']
+ camera_pose_list, pose_name = load_camera_pose(args.cond_dir, cmcm_prompt_camerapose['camera_poses'])
+ traj_list = None
+ save_name_list = []
+ for i in range(len(pose_name)):
+ save_name_list.append(f"{pose_name[i]}__{prompt_list[i].replace(' ', '_').replace(',', '')}")
+ elif args.condtype == 'object_motion':
+ prompt_list = omom_prompt_traj['prompts']
+ traj_list, traj_name = load_trajs(args.cond_dir, omom_prompt_traj['trajs'])
+ camera_pose_list = None
+ save_name_list = []
+ for i in range(len(traj_name)):
+ save_name_list.append(f"{traj_name[i]}__{prompt_list[i].replace(' ', '_').replace(',', '')}")
+ elif args.condtype == 'both':
+ prompt_list = both_prompt_camerapose_traj['prompts']
+ camera_pose_list, pose_name = load_camera_pose(args.cond_dir, both_prompt_camerapose_traj['camera_poses'])
+ traj_list, traj_name = load_trajs(args.cond_dir, both_prompt_camerapose_traj['trajs'])
+ save_name_list = []
+ for i in range(len(pose_name)):
+ save_name_list.append(f"{pose_name[i]}__{traj_name[i]}__{prompt_list[i].replace(' ', '_').replace(',', '')}")
+
+ num_samples = len(prompt_list)
+ samples_split = num_samples // gpu_num
+ print('Prompts testing [rank:%d] %d/%d samples loaded.'%(gpu_no, samples_split, num_samples))
+ #indices = random.choices(list(range(0, num_samples)), k=samples_per_device)
+ indices = list(range(samples_split*gpu_no, samples_split*(gpu_no+1)))
+ prompt_list_rank = [prompt_list[i] for i in indices]
+ camera_pose_list_rank = None if camera_pose_list is None else [camera_pose_list[i] for i in indices]
+ traj_list_rank = None if traj_list is None else [traj_list[i] for i in indices]
+ save_name_list_rank = [save_name_list[i] for i in indices]
+
+ start = time.time()
+ for idx, indice in tqdm(enumerate(range(0, len(prompt_list_rank), args.bs)), desc='Sample Batch'):
+ prompts = prompt_list_rank[indice:indice+args.bs]
+ camera_poses = None if camera_pose_list_rank is None else camera_pose_list_rank[indice:indice+args.bs]
+ trajs = None if traj_list_rank is None else traj_list_rank[indice:indice+args.bs]
+ save_name = save_name_list_rank[indice:indice+args.bs]
+ print(f'Processing {save_name}')
+
+ if camera_poses is not None:
+ camera_poses = torch.stack(camera_poses, dim=0).to("cuda")
+ if trajs is not None:
+ trajs = torch.stack(trajs, dim=0).to("cuda")
+
+ batch_samples = motionctrl_sample(
+ model,
+ prompts,
+ noise_shape,
+ camera_poses=camera_poses,
+ trajs=trajs,
+ n_samples=args.n_samples,
+ unconditional_guidance_scale=args.unconditional_guidance_scale,
+ unconditional_guidance_scale_temporal=args.unconditional_guidance_scale_temporal,
+ ddim_steps=args.ddim_steps,
+ ddim_eta=args.ddim_eta,
+ cond_T = args.cond_T,
+ )
+
+ ## save each example individually
+ for nn, samples in enumerate(batch_samples):
+ ## samples : [n_samples,c,t,h,w]
+ prompt = prompts[nn]
+ name = save_name[nn]
+ if len(name) > 90:
+ name = name[:90]
+ filename = f'{name}_{idx*args.bs+nn:04d}_randk{gpu_no}'
+
+ save_results(samples, filename, savedir, fps=10)
+ if args.save_imgs:
+ parts = save_name[nn].split('__')
+ if len(parts) == 2:
+ cond_name = parts[0]
+ prname = prompts[nn].replace(' ', '_').replace(',', '')
+ cur_outdir = os.path.join(savedir, cond_name, prname)
+ elif len(parts) == 3:
+ poname, trajname, _ = save_name[nn].split('__')
+ prname = prompts[nn].replace(' ', '_').replace(',', '')
+ cur_outdir = os.path.join(savedir, poname, trajname, prname)
+ else:
+ raise NotImplementedError
+ os.makedirs(cur_outdir, exist_ok=True)
+ save_images(samples, cur_outdir)
+ if nn % 100 == 0:
+ print(f'Finish {nn}/{len(batch_samples)}')
+
+ print(f"Saved in {args.savedir}. Time used: {(time.time() - start):.2f} seconds")
+
+def save_images(samples, savedir):
+ ## samples : [n_samples,c,t,h,w]
+ n_samples, c, t, h, w = samples.shape
+ samples = torch.clamp(samples, -1.0, 1.0)
+ samples = (samples + 1.0) / 2.0
+ samples = (samples * 255).detach().cpu().numpy().astype(np.uint8)
+ for i in range(n_samples):
+ cur_outdir = os.path.join(savedir, f'{i}/images')
+ os.makedirs(cur_outdir, exist_ok=True)
+
+ for j in range(t):
+ img = samples[i,:,j,:,:]
+ img = np.transpose(img, (1,2,0))
+ img = img[:,:,::-1] # BGR to RGB
+ path = os.path.join(cur_outdir, f'{j:04d}.png')
+ cv2.imwrite(path, img)
+
+def get_parser():
+ parser = argparse.ArgumentParser()
+ parser.add_argument("--savedir", type=str, default=None, help="results saving path")
+ parser.add_argument("--ckpt_path", type=str, default=None, help="checkpoint path")
+ parser.add_argument("--adapter_ckpt", type=str, default=None, help="adapter checkpoint path")
+ parser.add_argument("--base", type=str, help="config (yaml) path")
+ parser.add_argument("--condtype", default='frame', type=str, help="conditon type: {frame, depth, adapter}")
+ parser.add_argument("--prompt_dir", type=str, default=None, help="a data dir containing videos and prompts")
+ parser.add_argument("--n_samples", type=int, default=1, help="num of samples per prompt",)
+ parser.add_argument("--ddim_steps", type=int, default=50, help="steps of ddim if positive, otherwise use DDPM",)
+ parser.add_argument("--ddim_eta", type=float, default=1.0, help="eta for ddim sampling (0.0 yields deterministic sampling)",)
+ parser.add_argument("--bs", type=int, default=1, help="batch size for inference")
+ parser.add_argument("--height", type=int, default=512, help="image height, in pixel space")
+ parser.add_argument("--width", type=int, default=512, help="image width, in pixel space")
+ parser.add_argument("--unconditional_guidance_scale", type=float, default=1.0, help="prompt classifier-free guidance")
+ parser.add_argument("--unconditional_guidance_scale_temporal", type=float, default=None, help="temporal consistency guidance")
+ parser.add_argument("--seed", type=int, default=20230211, help="seed for seed_everything")
+ parser.add_argument("--cond_T", default=800, type=int, help="Steps smaller than cond_T will not contain condition")
+ parser.add_argument("--save_imgs", action='store_true', help="save condition")
+ parser.add_argument("--cond_dir", type=str, default=None, help="condition dir")
+
+ return parser
+
+
+if __name__ == '__main__':
+ now = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S")
+ print("@CoLVDM cond-Inference: %s"%now)
+ parser = get_parser()
+ args, unkown = parser.parse_known_args()
+ # args = parser.parse_args()
+
+ seed_everything(args.seed)
+ rank, gpu_num = 0, 1
+ run_inference(args, gpu_num, rank)
\ No newline at end of file
diff --git a/main/evaluation/motionctrl_prompts_camerapose_trajs.py b/main/evaluation/motionctrl_prompts_camerapose_trajs.py
new file mode 100644
index 0000000000000000000000000000000000000000..e668ef48ecdec41ed45efe3344ba695e63198c91
--- /dev/null
+++ b/main/evaluation/motionctrl_prompts_camerapose_trajs.py
@@ -0,0 +1,114 @@
+##### CMCM #####
+complex_camera_poses = [
+ "test_camera_d971457c81bca597",
+ "test_camera_d971457c81bca597",
+ "test_camera_d971457c81bca597",
+ 'test_camera_Round-ZoomIn',
+ 'test_camera_Round-ZoomIn',
+ 'test_camera_Round-ZoomIn'
+]
+complex_camera_pose_prompt = [
+ "a temple on a mountain, bird's view",
+ "Effiel Tower in Paris, bird's view",
+ "a castle in a forest, bird's view",
+ "a temple on a mountain, bird's view",
+ "Effiel Tower in Paris, bird's view",
+ "a castle in a forest, bird's view",
+ ]
+
+basic_camera_poses = [
+ 'test_camera_L',
+ 'test_camera_D',
+ 'test_camera_I',
+ 'test_camera_O',
+ 'test_camera_R',
+ 'test_camera_U',
+ 'test_camera_SPIN-CW-60',
+ 'test_camera_SPIN-ACW-60',
+]
+
+basic_camera_pose_prompt = [
+ 'coastline, rocks, storm weather, wind, waves, lightning',
+ 'coastline, rocks, storm weather, wind, waves, lightning',
+ 'coastline, rocks, storm weather, wind, waves, lightning',
+ 'coastline, rocks, storm weather, wind, waves, lightning',
+ 'coastline, rocks, storm weather, wind, waves, lightning',
+ 'coastline, rocks, storm weather, wind, waves, lightning',
+ 'coastline, rocks, storm weather, wind, waves, lightning',
+ 'coastline, rocks, storm weather, wind, waves, lightning',
+]
+
+diff_speeds_camera_poses = [
+ 'test_camera_I_0.2x',
+ 'test_camera_I_0.4x',
+ 'test_camera_I_1.0x',
+ 'test_camera_I_2.0x',
+
+ 'test_camera_O_0.2x',
+ 'test_camera_O_0.4x',
+ 'test_camera_O_1.0x',
+ 'test_camera_O_2.0x',
+]
+
+diff_speeds_camera_pose_prompt = [
+ 'A sunrise landscape features mountains and lakes',
+ 'A sunrise landscape features mountains and lakes',
+ 'A sunrise landscape features mountains and lakes',
+ 'A sunrise landscape features mountains and lakes',
+ 'A sunrise landscape features mountains and lakes',
+ 'A sunrise landscape features mountains and lakes',
+ 'A sunrise landscape features mountains and lakes',
+ 'A sunrise landscape features mountains and lakes',
+]
+
+cmcm_prompt_camerapose = {
+ 'prompts': complex_camera_pose_prompt + basic_camera_pose_prompt + diff_speeds_camera_pose_prompt,
+ 'camera_poses': complex_camera_poses + basic_camera_poses + diff_speeds_camera_poses
+}
+
+assert len(cmcm_prompt_camerapose['prompts']) == len(cmcm_prompt_camerapose['camera_poses']), \
+ "The number of prompts and camera poses should be the same."
+
+### OMCM ###
+
+trajs = [
+ 'shake_1', 'shake_1', 'shake_1',
+ 'curve_2', 'curve_2', 'curve_2',
+]
+
+traj_prompt = [
+ 'a sunflower swaying in the wind',
+ 'a rose swaying in the wind',
+ 'a wind chime swaying in the wind',
+ 'a man surfing',
+ 'a man skateboarding',
+ 'a girl skiing'
+]
+
+omom_prompt_traj = {
+ 'prompts': traj_prompt,
+ 'trajs': trajs
+}
+
+assert len(omom_prompt_traj['prompts']) == len(omom_prompt_traj['trajs']), \
+ "The number of prompts and trajs should be the same."
+
+both_camerapose = [
+ 'test_camera_O'
+]
+both_traj = [
+ 'shaking_10'
+]
+both_prompt = [
+ 'a rose swaying in the wind'
+]
+
+both_prompt_camerapose_traj = {
+ 'prompts': both_prompt,
+ 'camera_poses': both_camerapose,
+ 'trajs': both_traj
+
+}
+
+assert len(both_prompt_camerapose_traj['prompts']) == len(both_prompt_camerapose_traj['camera_poses']) == len(both_prompt_camerapose_traj['trajs']), \
+ "The number of prompts, camera poses and trajs should be the same."
\ No newline at end of file
diff --git a/motionctrl/lvdm_modified_modules.py b/motionctrl/lvdm_modified_modules.py
new file mode 100644
index 0000000000000000000000000000000000000000..33c3480cdd8ac4d0cf8afd072c6436ccde4e3d8b
--- /dev/null
+++ b/motionctrl/lvdm_modified_modules.py
@@ -0,0 +1,153 @@
+import logging
+
+import torch
+from einops import rearrange, repeat
+
+from lvdm.models.utils_diffusion import timestep_embedding
+
+try:
+ import xformers
+ import xformers.ops
+ XFORMERS_IS_AVAILBLE = True
+except:
+ XFORMERS_IS_AVAILBLE = False
+
+mainlogger = logging.getLogger('mainlogger')
+
+
+
+def TemporalTransformer_forward(self, x, context=None, is_imgbatch=False):
+ b, c, t, h, w = x.shape
+ x_in = x
+ x = self.norm(x)
+ x = rearrange(x, 'b c t h w -> (b h w) c t').contiguous()
+ if not self.use_linear:
+ x = self.proj_in(x)
+ x = rearrange(x, 'bhw c t -> bhw t c').contiguous()
+ if self.use_linear:
+ x = self.proj_in(x)
+
+ temp_mask = None
+ if self.causal_attention:
+ temp_mask = torch.tril(torch.ones([1, t, t]))
+ if is_imgbatch:
+ temp_mask = torch.eye(t).unsqueeze(0)
+ if temp_mask is not None:
+ mask = temp_mask.to(x.device)
+ mask = repeat(mask, 'l i j -> (l bhw) i j', bhw=b*h*w)
+ else:
+ mask = None
+
+ if self.only_self_att:
+ ## note: if no context is given, cross-attention defaults to self-attention
+ for i, block in enumerate(self.transformer_blocks):
+ x = block(x, context=context, mask=mask)
+ x = rearrange(x, '(b hw) t c -> b hw t c', b=b).contiguous()
+ else:
+ x = rearrange(x, '(b hw) t c -> b hw t c', b=b).contiguous()
+ context = rearrange(context, '(b t) l con -> b t l con', t=t).contiguous()
+ for i, block in enumerate(self.transformer_blocks):
+ # calculate each batch one by one (since number in shape could not greater then 65,535 for some package)
+ for j in range(b):
+ unit_context = context[j][0:1]
+ context_j = repeat(unit_context, 't l con -> (t r) l con', r=(h * w)).contiguous()
+ ## note: causal mask will not applied in cross-attention case
+ x[j] = block(x[j], context=context_j)
+
+ if self.use_linear:
+ x = self.proj_out(x)
+ x = rearrange(x, 'b (h w) t c -> b c t h w', h=h, w=w).contiguous()
+ if not self.use_linear:
+ x = rearrange(x, 'b hw t c -> (b hw) c t').contiguous()
+ x = self.proj_out(x)
+ x = rearrange(x, '(b h w) c t -> b c t h w', b=b, h=h, w=w).contiguous()
+
+ if self.use_image_dataset:
+ x = 0.0 * x + x_in
+ else:
+ x = x + x_in
+ return x
+
+def selfattn_forward_unet(self, x, timesteps, context=None, y=None, features_adapter=None, is_imgbatch=False, T=None, **kwargs):
+ b,_,t,_,_ = x.shape
+
+ t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
+ emb = self.time_embed(t_emb)
+ if self.micro_condition and y is not None:
+ micro_emb = timestep_embedding(y, self.model_channels, repeat_only=False)
+ emb = emb + self.micro_embed(micro_emb)
+
+
+
+ # pose_emb = pose_emb.reshape(-1, pose_emb.shape[-1])
+ ## repeat t times for context [(b t) 77 768] & time embedding
+ if not is_imgbatch:
+ context = context.repeat_interleave(repeats=t, dim=0)
+
+ if 'pose_emb' in kwargs:
+ pose_emb = kwargs.pop('pose_emb')
+ context = { 'context': context, 'pose_emb': pose_emb }
+
+ emb = emb.repeat_interleave(repeats=t, dim=0)
+
+ ## always in shape (b t) c h w, except for temporal layer
+ x = rearrange(x, 'b c t h w -> (b t) c h w')
+ if features_adapter is not None:
+ features_adapter = [rearrange(feature, 'b c t h w -> (b t) c h w') for feature in features_adapter]
+
+ h = x.type(self.dtype)
+ adapter_idx = 0
+ hs = []
+ for id, module in enumerate(self.input_blocks):
+ h = module(h, emb, context=context, batch_size=b,is_imgbatch=is_imgbatch)
+ if id ==0 and self.addition_attention:
+ h = self.init_attn(h, emb, context=context, batch_size=b,is_imgbatch=is_imgbatch)
+ ## plug-in adapter features
+ if ((id+1)%3 == 0) and features_adapter is not None:
+ # if adapter_idx == 0 or adapter_idx == 1 or adapter_idx == 2:
+ h = h + features_adapter[adapter_idx]
+ adapter_idx += 1
+ hs.append(h)
+ if features_adapter is not None:
+ assert len(features_adapter)==adapter_idx, 'Wrong features_adapter'
+
+ h = self.middle_block(h, emb, context=context, batch_size=b, is_imgbatch=is_imgbatch)
+ for module in self.output_blocks:
+ h = torch.cat([h, hs.pop()], dim=1)
+ h = module(h, emb, context=context, batch_size=b, is_imgbatch=is_imgbatch)
+ h = h.type(x.dtype)
+ y = self.out(h)
+
+ # reshape back to (b c t h w)
+ y = rearrange(y, '(b t) c h w -> b c t h w', b=b)
+ return y
+
+def spatial_forward_BasicTransformerBlock(self, x, context=None, mask=None):
+ if isinstance(context, dict):
+ context = context['context']
+ x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None, mask=mask) + x
+ x = self.attn2(self.norm2(x), context=context, mask=mask) + x
+ x = self.ff(self.norm3(x)) + x
+ return x
+
+def temporal_selfattn_forward_BasicTransformerBlock(self, x, context=None, mask=None):
+ if isinstance(context, dict) and 'pose_emb' in context:
+ pose_emb = context['pose_emb'] # {channel_num: [B, video_length, pose_dim, pose_embedding_dim]}
+ context = None
+ else:
+ pose_emb = None
+ context = None
+
+ x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None, mask=mask) + x
+
+ # Add camera pose
+ if pose_emb is not None:
+ B, t, _, _ = pose_emb.shape # [B, video_length, pose_dim, pose_embedding_dim]
+ hw = x.shape[0] // B
+ pose_emb = pose_emb.reshape(B, t, -1)
+ pose_emb = pose_emb.repeat_interleave(repeats=hw, dim=0)
+ x = self.cc_projection(torch.cat([x, pose_emb], dim=-1))
+
+ x = self.attn2(self.norm2(x), context=context, mask=mask) + x
+ x = self.ff(self.norm3(x)) + x
+ return x
diff --git a/motionctrl/motionctrl.py b/motionctrl/motionctrl.py
new file mode 100644
index 0000000000000000000000000000000000000000..bb8c6808f9ed450878d36054ac7082995c02ce6c
--- /dev/null
+++ b/motionctrl/motionctrl.py
@@ -0,0 +1,67 @@
+import torch.nn as nn
+from einops import rearrange
+
+from lvdm.models.ddpm3d import LatentDiffusion
+from motionctrl.lvdm_modified_modules import (
+ TemporalTransformer_forward, selfattn_forward_unet,
+ spatial_forward_BasicTransformerBlock,
+ temporal_selfattn_forward_BasicTransformerBlock)
+from utils.utils import instantiate_from_config
+
+
+class MotionCtrl(LatentDiffusion):
+ def __init__(self,
+ omcm_config=None,
+ pose_dim=12,
+ context_dim=1024,
+ *args,
+ **kwargs):
+ super(MotionCtrl, self).__init__(*args, **kwargs)
+
+ # object motion control module
+ if omcm_config is not None:
+ self.omcm = instantiate_from_config(omcm_config)
+ else:
+ self.omcm = None
+
+
+ # camera motion control module
+
+ bound_method = selfattn_forward_unet.__get__(
+ self.model.diffusion_model,
+ self.model.diffusion_model.__class__)
+ setattr(self.model.diffusion_model, 'forward', bound_method)
+
+ for _name, _module in self.model.diffusion_model.named_modules():
+ if _module.__class__.__name__ == 'TemporalTransformer':
+ bound_method = TemporalTransformer_forward.__get__(
+ _module, _module.__class__)
+ setattr(_module, 'forward', bound_method)
+
+ if _module.__class__.__name__ == 'BasicTransformerBlock':
+ # SpatialTransformer only
+ if _module.attn2.to_k.in_features != context_dim: # TemporalTransformer without crossattn
+
+ bound_method = temporal_selfattn_forward_BasicTransformerBlock.__get__(
+ _module, _module.__class__)
+ setattr(_module, '_forward', bound_method)
+
+ cc_projection = nn.Linear(_module.attn2.to_k.in_features + pose_dim, _module.attn2.to_k.in_features)
+ nn.init.eye_(list(cc_projection.parameters())[0][:_module.attn2.to_k.in_features, :_module.attn2.to_k.in_features])
+ nn.init.zeros_(list(cc_projection.parameters())[1])
+ cc_projection.requires_grad_(True)
+
+ _module.add_module('cc_projection', cc_projection)
+
+ else:
+ bound_method = spatial_forward_BasicTransformerBlock.__get__(
+ _module, _module.__class__)
+ setattr(_module, '_forward', bound_method)
+
+ def get_traj_features(self, extra_cond):
+ b, c, t, h, w = extra_cond.shape
+ ## process in 2D manner
+ extra_cond = rearrange(extra_cond, 'b c t h w -> (b t) c h w')
+ traj_features = self.omcm(extra_cond)
+ traj_features = [rearrange(feature, '(b t) c h w -> b c t h w', b=b, t=t) for feature in traj_features]
+ return traj_features
diff --git a/requirements.txt b/requirements.txt
new file mode 100644
index 0000000000000000000000000000000000000000..a561d88fab379f3c1daa6a926003999e34a7b271
--- /dev/null
+++ b/requirements.txt
@@ -0,0 +1,25 @@
+decord==0.6.0
+einops==0.3.0
+numpy==1.24.2
+omegaconf==2.1.1
+pandas==2.0.0
+Pillow==9.5.0
+pytorch_lightning==1.8.3
+PyYAML==6.0
+setuptools==65.6.3
+torch==2.0.0
+torchvision
+tqdm==4.65.0
+transformers==4.25.1
+moviepy
+av
+xformers
+timm
+scikit-learn
+open_clip_torch==2.12.0
+kornia
+gradio==3.37.0 #3.35.2
+plotly
+imageio==2.14.1
+imageio-ffmpeg==0.4.7
+opencv-python==4.8.0.74
\ No newline at end of file
diff --git a/utils/utils.py b/utils/utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..ac6d754b77cda98536b256d11dd40722f7ff8d2d
--- /dev/null
+++ b/utils/utils.py
@@ -0,0 +1,80 @@
+import importlib
+import numpy as np
+from inspect import isfunction
+from PIL import Image, ImageDraw, ImageFont
+import cv2
+
+import torch
+import torch.distributed as dist
+
+
+def count_params(model, verbose=False):
+ total_params = sum(p.numel() for p in model.parameters())
+ if verbose:
+ print(f"{model.__class__.__name__} has {total_params*1.e-6:.2f} M params.")
+ return total_params
+
+
+def check_istarget(name, para_list):
+ """
+ name: full name of source para
+ para_list: partial name of target para
+ """
+ istarget=False
+ for para in para_list:
+ if para in name:
+ return True
+ return istarget
+
+
+def instantiate_from_config(config):
+ if not "target" in config:
+ if config == '__is_first_stage__':
+ return None
+ elif config == "__is_unconditional__":
+ return None
+ raise KeyError("Expected key `target` to instantiate.")
+ return get_obj_from_str(config["target"])(**config.get("params", dict()))
+
+
+def get_obj_from_str(string, reload=False):
+ module, cls = string.rsplit(".", 1)
+ if reload:
+ module_imp = importlib.import_module(module)
+ importlib.reload(module_imp)
+ return getattr(importlib.import_module(module, package=None), cls)
+
+
+def load_npz_from_dir(data_dir):
+ data = [np.load(os.path.join(data_dir, data_name))['arr_0'] for data_name in os.listdir(data_dir)]
+ data = np.concatenate(data, axis=0)
+ return data
+
+
+def load_npz_from_paths(data_paths):
+ data = [np.load(data_path)['arr_0'] for data_path in data_paths]
+ data = np.concatenate(data, axis=0)
+ return data
+
+
+def resize_numpy_image(image, max_resolution=512 * 512, resize_short_edge=None):
+ h, w = image.shape[:2]
+ if resize_short_edge is not None:
+ k = resize_short_edge / min(h, w)
+ else:
+ k = max_resolution / (h * w)
+ k = k**0.5
+ h = int(np.round(h * k / 64)) * 64
+ w = int(np.round(w * k / 64)) * 64
+ image = cv2.resize(image, (w, h), interpolation=cv2.INTER_LANCZOS4)
+ return image
+
+
+def setup_dist(args):
+ if dist.is_initialized():
+ return
+ torch.cuda.set_device(args.local_rank)
+ torch.distributed.init_process_group(
+ 'nccl',
+ init_method='env://'
+ )
\ No newline at end of file