File size: 5,696 Bytes
b2682d8
 
 
 
 
 
 
 
 
bfb88c0
b2682d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76cfa14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2682d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfb88c0
b2682d8
 
bfb88c0
b2682d8
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import os
import sys
import torch
from openai import OpenAI
from transformers import (
    LlavaNextProcessor, LlavaNextForConditionalGeneration, 
    Qwen2VLForConditionalGeneration, Qwen2VLProcessor
)
## init device
device = "cuda"
torch_dtype = torch.float16


vlms_list = [
    # {
    #     "type": "llava-next",
    #     "name": "llava-v1.6-mistral-7b-hf",
    #     "local_path": "models/vlms/llava-v1.6-mistral-7b-hf",
    #     "processor": LlavaNextProcessor.from_pretrained(
    #         "models/vlms/llava-v1.6-mistral-7b-hf"
    #     ) if os.path.exists("models/vlms/llava-v1.6-mistral-7b-hf") else LlavaNextProcessor.from_pretrained(
    #         "llava-hf/llava-v1.6-mistral-7b-hf"
    #     ),
    #     "model": LlavaNextForConditionalGeneration.from_pretrained(
    #         "models/vlms/llava-v1.6-mistral-7b-hf", torch_dtype=torch_dtype, device_map=device
    #     ).to("cpu") if os.path.exists("models/vlms/llava-v1.6-mistral-7b-hf") else 
    #         LlavaNextForConditionalGeneration.from_pretrained(
    #             "llava-hf/llava-v1.6-mistral-7b-hf", torch_dtype=torch_dtype, device_map=device
    #         ).to("cpu"),
    # },
    # {
    #     "type": "llava-next",
    #     "name": "llama3-llava-next-8b-hf (Preload)",
    #     "local_path": "models/vlms/llama3-llava-next-8b-hf",
    #     "processor": LlavaNextProcessor.from_pretrained(
    #         "models/vlms/llama3-llava-next-8b-hf"
    #     ) if os.path.exists("models/vlms/llama3-llava-next-8b-hf") else LlavaNextProcessor.from_pretrained(
    #         "llava-hf/llama3-llava-next-8b-hf"
    #     ),
    #     "model": LlavaNextForConditionalGeneration.from_pretrained(
    #         "models/vlms/llama3-llava-next-8b-hf", torch_dtype=torch_dtype, device_map=device
    #     ).to("cpu") if os.path.exists("models/vlms/llama3-llava-next-8b-hf") else 
    #         LlavaNextForConditionalGeneration.from_pretrained(
    #             "llava-hf/llama3-llava-next-8b-hf", torch_dtype=torch_dtype, device_map=device
    #         ).to("cpu"),
    # },
    # {
    #     "type": "llava-next",
    #     "name": "llava-v1.6-vicuna-13b-hf",
    #     "local_path": "models/vlms/llava-v1.6-vicuna-13b-hf",
    #     "processor": LlavaNextProcessor.from_pretrained(
    #         "models/vlms/llava-v1.6-vicuna-13b-hf"
    #     ) if os.path.exists("models/vlms/llava-v1.6-vicuna-13b-hf") else LlavaNextProcessor.from_pretrained(
    #         "llava-hf/llava-v1.6-vicuna-13b-hf"
    #     ),
    #     "model": LlavaNextForConditionalGeneration.from_pretrained(
    #         "models/vlms/llava-v1.6-vicuna-13b-hf", torch_dtype=torch_dtype, device_map=device
    #     ).to("cpu") if os.path.exists("models/vlms/llava-v1.6-vicuna-13b-hf") else 
    #         LlavaNextForConditionalGeneration.from_pretrained(
    #             "llava-hf/llava-v1.6-vicuna-13b-hf", torch_dtype=torch_dtype, device_map=device
    #         ).to("cpu"),
    # },
    # {
    #     "type": "llava-next",
    #     "name": "llava-v1.6-34b-hf",
    #     "local_path": "models/vlms/llava-v1.6-34b-hf",
    #     "processor": LlavaNextProcessor.from_pretrained(
    #         "models/vlms/llava-v1.6-34b-hf"
    #     ) if os.path.exists("models/vlms/llava-v1.6-34b-hf") else LlavaNextProcessor.from_pretrained(
    #         "llava-hf/llava-v1.6-34b-hf"
    #     ),
    #     "model": LlavaNextForConditionalGeneration.from_pretrained(
    #         "models/vlms/llava-v1.6-34b-hf", torch_dtype=torch_dtype, device_map=device
    #     ).to("cpu") if os.path.exists("models/vlms/llava-v1.6-34b-hf") else 
    #         LlavaNextForConditionalGeneration.from_pretrained(
    #             "llava-hf/llava-v1.6-34b-hf", torch_dtype=torch_dtype, device_map=device
    #         ).to("cpu"),
    # },
    # {
    #     "type": "qwen2-vl",
    #     "name": "Qwen2-VL-2B-Instruct",
    #     "local_path": "models/vlms/Qwen2-VL-2B-Instruct",
    #     "processor": Qwen2VLProcessor.from_pretrained(
    #         "models/vlms/Qwen2-VL-2B-Instruct"
    #     ) if os.path.exists("models/vlms/Qwen2-VL-2B-Instruct") else Qwen2VLProcessor.from_pretrained(
    #         "Qwen/Qwen2-VL-2B-Instruct"
    #     ),
    #     "model": Qwen2VLForConditionalGeneration.from_pretrained(
    #         "models/vlms/Qwen2-VL-2B-Instruct", torch_dtype=torch_dtype, device_map=device
    #     ).to("cpu") if os.path.exists("models/vlms/Qwen2-VL-2B-Instruct") else 
    #         Qwen2VLForConditionalGeneration.from_pretrained(
    #             "Qwen/Qwen2-VL-2B-Instruct", torch_dtype=torch_dtype, device_map=device
    #         ).to("cpu"),
    # },
    {
        "type": "qwen2-vl",
        "name": "Qwen2-VL-7B-Instruct (Default)",
        "local_path": "models/vlms/Qwen2-VL-7B-Instruct",
        "processor": Qwen2VLProcessor.from_pretrained(
            "models/vlms/Qwen2-VL-7B-Instruct"
        ) if os.path.exists("models/vlms/Qwen2-VL-7B-Instruct") else Qwen2VLProcessor.from_pretrained(
            "Qwen/Qwen2-VL-7B-Instruct"
        ),
        "model": Qwen2VLForConditionalGeneration.from_pretrained(
            "models/vlms/Qwen2-VL-7B-Instruct", torch_dtype=torch_dtype, device_map=device
        ).to(device) if os.path.exists("models/vlms/Qwen2-VL-7B-Instruct") else 
            Qwen2VLForConditionalGeneration.from_pretrained(
                "Qwen/Qwen2-VL-7B-Instruct", torch_dtype=torch_dtype, device_map=device
            ).to(device),
    },
    {
        "type": "openai",
        "name": "GPT4-o (Highly Recommended)",
        "local_path": "",
        "processor": "",
        "model": ""
    },
]

vlms_template = {k["name"]: (k["type"], k["local_path"], k["processor"], k["model"]) for k in vlms_list}