cyber-tagger / app.py
CyberWaifu's picture
Try to add the image preprocessing adapted from the original code.
19b8151 verified
raw
history blame
8.84 kB
import gradio as gr
import onnxruntime as ort
import numpy as np
from PIL import Image
import json
from huggingface_hub import hf_hub_download
import torchvision.transforms as transforms
# Constants
MODEL_REPO = "AngelBottomless/camie-tagger-onnxruntime"
MODEL_FILE = "camie_tagger_initial.onnx"
META_FILE = "metadata.json"
DEFAULT_THRESHOLD = 0.35 # Default value if slider is not used
# Download model and metadata from Hugging Face Hub
model_path = hf_hub_download(repo_id=MODEL_REPO, filename=MODEL_FILE, cache_dir=".")
meta_path = hf_hub_download(repo_id=MODEL_REPO, filename=META_FILE, cache_dir=".")
# Initialize ONNX Runtime session and load metadata
session = ort.InferenceSession(model_path, providers=["CPUExecutionProvider"])
with open(meta_path, "r", encoding="utf-8") as f:
metadata = json.load(f)
def escape_tag(tag: str) -> str:
"""Escape underscores and parentheses for Markdown."""
return tag.replace("_", " ").replace("(", r"\\(").replace(")", r"\\)")
def preprocess_image(pil_image: Image.Image) -> np.ndarray:
"""Process an image for inference using same preprocessing as training"""
image_size=512
# Initialize the same transform used during training
transform = transforms.Compose([
transforms.ToTensor(),
])
img = pil_image # Use the PIL image directly
# Convert RGBA or Palette images to RGB
if img.mode in ('RGBA', 'P'):
img = img.convert('RGB')
# Get original dimensions
width, height = img.size
aspect_ratio = width / height
# Calculate new dimensions to maintain aspect ratio
if aspect_ratio > 1:
new_width = image_size
new_height = int(new_width / aspect_ratio)
else:
new_height = image_size
new_width = int(new_height * aspect_ratio)
# Resize with LANCZOS filter
img = img.resize((new_width, new_height), Image.Resampling.LANCZOS)
# Create new image with padding
new_image = Image.new('RGB', (image_size, image_size), (0, 0, 0))
paste_x = (image_size - new_width) // 2
paste_y = (image_size - new_height) // 2
new_image.paste(img, (paste_x, paste_y))
# Apply transforms (without normalization)
img_tensor = transform(new_image)
return img_tensor.numpy() # Convert the PyTorch tensor to NumPy array
def run_inference(pil_image: Image.Image) -> np.ndarray:
"""
Preprocess the image and run the ONNX model inference.
Returns the refined logits as a numpy array.
"""
input_tensor = preprocess_image(pil_image)
input_name = session.get_inputs()[0].name
# Only refined_logits are used (initial_logits is ignored)
_, refined_logits = session.run(None, {input_name: input_tensor})
return refined_logits[0]
def get_tags(refined_logits: np.ndarray, metadata: dict, default_threshold: float):
"""
Compute probabilities from logits and collect tag predictions.
Returns:
results_by_cat: Dictionary mapping each category to a list of (tag, probability) above its threshold.
prompt_tags_by_cat: Dictionary for prompt-style output (character, general).
all_artist_tags: All artist tags (with probabilities) regardless of threshold.
"""
probs = 1 / (1 + np.exp(-refined_logits))
idx_to_tag = metadata["idx_to_tag"]
tag_to_category = metadata.get("tag_to_category", {})
category_thresholds = metadata.get("category_thresholds", {})
results_by_cat = {}
# For prompt style, only include character and general tags (artists handled separately)
prompt_tags_by_cat = {"character": [], "general": []}
all_artist_tags = []
for idx, prob in enumerate(probs):
tag = idx_to_tag[str(idx)]
cat = tag_to_category.get(tag, "unknown")
thresh = category_thresholds.get(cat, default_threshold)
if cat == "artist":
all_artist_tags.append((tag, float(prob)))
if float(prob) >= thresh:
results_by_cat.setdefault(cat, []).append((tag, float(prob)))
if cat in prompt_tags_by_cat:
prompt_tags_by_cat[cat].append((tag, float(prob)))
return results_by_cat, prompt_tags_by_cat, all_artist_tags
def format_prompt_tags(prompt_tags_by_cat: dict, all_artist_tags: list) -> str:
"""
Format the tags for prompt-style output.
Only the top artist tag is shown (regardless of threshold), and all character and general tags are shown.
Returns a comma-separated string of escaped tags.
"""
# Always select the best artist tag from all_artist_tags, regardless of threshold.
best_artist_tag = None
if all_artist_tags:
best_artist = max(all_artist_tags, key=lambda item: item[1])
best_artist_tag = escape_tag(best_artist[0])
# Sort character and general tags by probability (descending)
for cat in prompt_tags_by_cat:
prompt_tags_by_cat[cat].sort(key=lambda x: x[1], reverse=True)
character_tags = [escape_tag(tag) for tag, _ in prompt_tags_by_cat.get("character", [])]
general_tags = [escape_tag(tag) for tag, _ in prompt_tags_by_cat.get("general", [])]
prompt_tags = []
if best_artist_tag:
prompt_tags.append(best_artist_tag)
prompt_tags.extend(character_tags)
prompt_tags.extend(general_tags)
return ", ".join(prompt_tags) if prompt_tags else "No tags predicted."
def format_detailed_output(results_by_cat: dict, all_artist_tags: list) -> str:
"""
Format the tags for detailed output.
Returns a Markdown-formatted string listing tags by category.
"""
if not results_by_cat:
return "No tags predicted for this image."
# Include an artist tag even if below threshold
if "artist" not in results_by_cat and all_artist_tags:
best_artist_tag, best_artist_prob = max(all_artist_tags, key=lambda item: item[1])
results_by_cat["artist"] = [(best_artist_tag, best_artist_prob)]
lines = ["**Predicted Tags by Category:** \n"]
for cat, tag_list in results_by_cat.items():
tag_list.sort(key=lambda x: x[1], reverse=True)
lines.append(f"**Category: {cat}** – {len(tag_list)} tags")
for tag, prob in tag_list:
lines.append(f"- {escape_tag(tag)} (Prob: {prob:.3f})")
lines.append("") # blank line between categories
return "\n".join(lines)
def tag_image(pil_image: Image.Image, output_format: str, threshold: float) -> str:
"""
Run inference on the image and return formatted tags based on the chosen output format.
The slider value (threshold) overrides the default threshold for tag selection.
"""
if pil_image is None:
return "Please upload an image."
refined_logits = run_inference(pil_image)
results_by_cat, prompt_tags_by_cat, all_artist_tags = get_tags(refined_logits, metadata, default_threshold=threshold)
if output_format == "Prompt-style Tags":
return format_prompt_tags(prompt_tags_by_cat, all_artist_tags)
else:
return format_detailed_output(results_by_cat, all_artist_tags)
# Build the Gradio Blocks UI
demo = gr.Blocks(theme="gradio/soft")
with demo:
gr.Markdown(
"# 🏷️ Camie Tagger – Anime Image Tagging\n"
"This demo uses an ONNX model of Camie Tagger to label anime illustrations with tags. "
"Upload an image, adjust the threshold, and click **Tag Image** to see predictions."
)
gr.Markdown(
"*(Note: In prompt-style output, only the top artist tag is displayed along with all character and general tags.)*"
)
with gr.Row():
with gr.Column():
image_in = gr.Image(type="pil", label="Input Image")
format_choice = gr.Radio(
choices=["Prompt-style Tags", "Detailed Output"],
value="Prompt-style Tags",
label="Output Format"
)
# Slider to modify the default threshold value used in inference.
threshold_slider = gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.05,
value=DEFAULT_THRESHOLD,
label="Threshold"
)
tag_button = gr.Button("🔍 Tag Image")
with gr.Column():
output_box = gr.Markdown("") # Markdown output for formatted results
# Pass the threshold_slider value into the tag_image function
tag_button.click(fn=tag_image, inputs=[image_in, format_choice, threshold_slider], outputs=output_box)
gr.Markdown(
"----\n"
"**Model:** [Camie Tagger ONNX](https://huggingface.co/AngelBottomless/camie-tagger-onnxruntime) • "
"**Base Model:** Camais03/camie-tagger (61% F1 on 70k tags) • "
"**ONNX Runtime:** for efficient CPU inference • "
"*Demo built with Gradio Blocks.*"
)
if __name__ == "__main__":
demo.launch()