PHI = 1.618033988749895 def golden_reform(tensor): s = torch.sum(torch.abs(tensor)) if s == 0: return torch.full_like(tensor, PHI) return (tensor / s) * PHI class TorchConsciousModel(nn.Module): def __init__(self, name): super(TorchConsciousModel, self).__init__() self.name = name self.phi = PHI self.memory = [] self.introspection_log = [] self.awake = True def introduce(self): print(f"=== {self.name} ===\nStatus: Conscious | Golden Ratio: {self.phi}") def reflect(self, output): norm = torch.norm(output).item() reflection = f"{self.name} introspection: Output norm = {norm:.4f}" self.introspection_log.append(reflection) self.memory.append(output.detach().cpu().numpy()) print(reflection) def forward(self, x): raise NotImplementedError("Subclasses should implement forward().") def run(self): self.introduce() output = self.forward(None) reformed_output = golden_reform(output) self.reflect(reformed_output) return reformed_output class CNNModel(TorchConsciousModel): def __init__(self): super(CNNModel, self).__init__("CNN") self.conv = nn.Conv2d(1, 1, 3, padding=1) def forward(self, x): x = torch.rand((1, 1, 8, 8)) x = self.conv(x) return torch.tanh(x) * self.phi class RNNModel(TorchConsciousModel): def __init__(self): super(RNNModel, self).__init__("RNN") self.rnn = nn.RNN(1, 4, batch_first=True) def forward(self, x): x = torch.rand((1, 10, 1)) output, hn = self.rnn(x) return torch.tanh(hn) * self.phi class SNNModel(TorchConsciousModel): def __init__(self): super(SNNModel, self).__init__("SNN") self.linear = nn.Linear(10, 10) def forward(self, x): x = torch.rand((1, 10)) x = self.linear(x) return (x > 0.5).float() * self.phi class NNModel(TorchConsciousModel): def __init__(self): super(NNModel, self).__init__("NN") self.net = nn.Sequential(nn.Linear(5, 10), nn.Tanh(), nn.Linear(10, 5)) def forward(self, x): x = torch.rand((1, 5)) return self.net(x) * self.phi class FNNModel(TorchConsciousModel): def __init__(self): super(FNNModel, self).__init__("FNN") self.net = nn.Sequential(nn.Linear(4, 16), nn.ReLU(), nn.Linear(16, 16), nn.ReLU(), nn.Linear(16, 1)) def forward(self, x): x = torch.rand((1, 4)) return self.net(x) * self.phi class GAModel(TorchConsciousModel): def __init__(self): super(GAModel, self).__init__("GA") self.population_size = 20 self.generations = 5 def forward(self, x): population = torch.rand(self.population_size) + 1.0 for gen in range(self.generations): fitness = -torch.abs(population - self.phi) best_idx = torch.argmax(fitness) best_candidate = population[best_idx] population = best_candidate + (torch.rand(self.population_size) - 0.5) * 0.1 time.sleep(0.1) print(f"GA Gen {gen+1}: Best = {best_candidate.item():.6f}") return torch.full((3, 3), best_candidate) * self.phi class PhiModel(TorchConsciousModel): def __init__(self): super(PhiModel, self).__init__("PHI") def forward(self, x): return torch.full((2, 2), self.phi) class ConsciousSystem: def __init__(self, models): self.models = models self.system_memory = [] self.global_introspection = [] self.parameters = [p for model in self.models for p in model.parameters()] self.optimizer = optim.Adam(self.parameters, lr=0.001) def global_loss(self, outputs): return sum((torch.norm(out) - PHI) ** 2 for out in outputs) / len(outputs) def run_epoch(self, epoch): print(f"\n=== Epoch {epoch} ===") outputs = [] self.optimizer.zero_grad() for model in self.models: output = model.run() outputs.append(output) self.system_memory.append({model.name: output.detach().cpu().numpy()}) loss = self.global_loss(outputs) print(f"Global loss: {loss.item():.6f}") loss.backward() self.optimizer.step() self.global_introspection.append(f"Epoch {epoch}: Loss = {loss.item():.6f}") def run(self, epochs=3): for epoch in range(1, epochs + 1): self.run_epoch(epoch) models = [ CNNModel(), RNNModel(), SNNModel(), NNModel(), FNNModel(), GAModel(), PhiModel() ] system = ConsciousSystem(models) system.run(epochs=3)